
Extending DevSecOps Security
Controls into the Cloud: A SANS Survey

A SANS Survey

Written by Jim Bird and Eric Johnson
Advisor: Frank Kim

October 2020

Sponsored by:
ExtraHop

©2020 SANS™ Institute

https://www.sans.org

2

Executive Summary

By moving work to the cloud, organizations can take advantage of the massive
investments in infrastructure-as-a-service (IaaS) and platform-as-a-service (PaaS)
engineering that cloud providers have made. Working in the cloud also creates new
challenges and opportunities when it comes to managing security and compliance risks.

DevOps—extending Agile development values, techniques and tools
from development to operations—has become the de facto model
for IT in the cloud. DevOps consists of cross-functional teams of
developers and operations engineers sharing responsibilities for
building, deploying and running applications; leaning heavily on
automated testing and build tooling; and letting the cloud provider
do the undifferentiated heavy lifting of running the data center,
provisioning infrastructure and operating generic platform services.

Secure DevOps, or DevSecOps, integrates security along the path,
from requirements to architecture and design, coding, testing,
release and deployment. This integration enables teams to
get work done quickly while managing security risks in-phase.
DevSecOps makes security a first-class problem—and the security
team a first-class participant—in development and operations.

This survey, the seventh in an annual series that focuses on
application security and DevOps, examines DevSecOps in the cloud
to understand:

• How organizations are using the cloud in platforms, runtime
architectures and development environments to identify
security requirements, risks and opportunities.

• How organizations are building and deploying applications
in the cloud—that is, understanding what Continuous
Integration (CI) and Continuous Delivery (CD) technologies
and practices are in use. The CI/CD pipeline is not just a
software delivery mechanism; it also serves as a control
plane that security and compliance teams can leverage to
inject testing and controls, enforce policies, and build an
end-to-end audit trail of changes.

• Whether or not security teams are able to keep up with fast-
moving DevOps teams that deploy changes at high velocity.
Have organizations been successful in Shifting Security Left
into development?

• What security tools and practices give DevSecOps teams the
most value, whether organizations are investing more in the Dev or Ops security
domains, and if organizations are Shifting Left or Shifting Right.

Extending DevSecOps Security Controls into the Cloud: A SANS Survey

DevOps: Shifting Left and Shifting Right
DevOps asks teams to shift left in order to introduce
testing and reviews as early as possible. This approach
reduces the cost and time related to finding and fixing
problems, while also minimizing friction and delays.

Instead of waiting until analysis, design and coding have
been completed before handing work off to QA and
Security for testing and review, DevOps teams work in
tight iterative and incremental loops, continuously testing
and reviewing changes as the code is checked in. Shifting
left puts responsibility and accountability for building
high-quality, secure, working software directly onto the
people who are writing the code.

Security can shift left by:

• Securing management buy-in on security priorities and
compliance requirements

• Training developers in secure coding and embedding
“security champions” into teams

• Finding security tools that are easy to use and fit
naturally into development workflows and automated
pipelines

• Helping DevOps teams implement these security tools

There will always be problems and risks that can’t be
understood and solved up front by developers looking
through the tightly focused Dev lens of DevOps. These
problems must be discovered and solved through a wider
Ops lens. Shifting left isn’t enough.

DevOps teams, and Security, also need to shift right by:

• Continuously testing and experimenting—evaluating
security tools and practices to learn what is useful and
what slows teams down and then conducting chaos
testing and operational fire drills, penetration testing
and security red teaming in live environments

• Continuously monitoring and using telemetry, collecting
insight on operational vulnerabilities and attacks that
pose real (not theoretical) risks to the organization

• Implementing automated compliance safeguards and
runtime protection to enforce security policies and
defend against rapidly changing threats

3

Figure 1 provides a snapshot of the demographics for the respondents to this survey.

By extending DevOps to the cloud, organizations offload many of the responsibilities and
risks for operations and scale to the cloud provider. As cloud platform offerings mature,
organizations can also shift more responsibilities for security and compliance to the
cloud platform itself. This enables organizations to take advantage of the cloud platform’s
capabilities and available cloud-based third-party services to reduce security risks and
costs, as well as simplify their security and compliance programs.

However, this is not a simple lift-and-shift exercise. Organizations must take
responsibility for architecting a secure solution, understanding and correctly using the
capabilities that cloud providers offer, and identifying and filling in any gaps.

Key Findings
• While on-premises application hosting is still the most common means for delivery,

cloud-hosted platforms are gaining traction. Yet many security professionals (36%)
are spending less than 25% of their time building a “paved road” for the cloud
provider platforms.

Extending DevSecOps Security Controls into the Cloud: A SANS Survey

Cybersecurity

Technology

Government

Top 4 Industries Represented

Each gear represents 10 respondents.

Organizational Size

Small
(Up to 1,000)

Small/Medium
(1,001–5,000)

Medium
(5,001–15,000)

Medium/Large
(15,001–50,000)

Large
(More than 50,000)

Each building represents 10 respondents.

Top 4 Roles Represented

Security administrator/
Security analyst

Security
architect

Security manager
or director

Other

Each person represents 10 respondents.

Operations and Headquarters

Ops: 179
HQ: 159

Ops: 61
HQ: 3

Ops: 38
HQ: 2

Ops: 55
HQ: 2

Ops: 49
HQ: 2

Ops: 77
HQ: 10 Ops: 77

HQ: 7
Ops: 95
HQ: 23

Banking and fi nance

Figure 1. Survey Demographics

• Most organizations, especially large enterprises, need to work with multiple cloud
platform providers, which means that they need to understand and manage a larger
range of security and compliance risks. The majority of organizations (92%) use at
least one public cloud provider, and the average organization has workloads running
in 2.33 public cloud providers.

• Agile and DevOps methods are enabling developers to deliver features and changes
faster and more cost effectively. The velocity of feature delivery has increased by
14% over the past four years, but the speed of security assessments is not keeping
up. Only half of organizations are taking advantage of automated testing, and 27%
are not doing any security testing at all.

• Most organizations are struggling to shift security left. Only 40% are including
security assessments early in planning and design, where important decisions
are made about architecture approach, development tooling and technology
platforms—and where mistakes or misunderstandings can be dangerous
and expensive.

• Successfully implementing DevSecOps is not a technical problem; it is an
organizational problem. Lack of resources, lack of management and developer
buy-in, bureaucracy, poor communication across silos and poor prioritization are
holding organizations back. But organizations can compensate to some extent for
these shortcomings by shifting more work and risk onto cloud providers who have
the scale, capabilities and agility to respond.

Understanding the Cloud Landscape

Mapping out the cloud landscape—the extent of cloud services adoption, the cloud
platforms’ runtime architectures used and the related development environments—helps
security understand the potential risks of working in the
cloud and how these risks can be managed.

As DevOps teams move their workloads into the cloud,
security teams are shifting right and learning how to apply
operations, monitoring and runtime security controls
across public cloud providers, such as Amazon Web
Services (AWS), Microsoft Azure and Google Cloud Platform
(GCP). A majority of security teams (64%) are now spending
at least 25% of their time deeply involved in public cloud
security and operational responsibilities (see Figure 2).

4Extending DevSecOps Security Controls into the Cloud: A SANS Survey

Figure 2. Time Spent on Architecture,
Security or Development

What percentage of your time is spent on cloud-related
architecture, security or development?

40%

30%

20%

10%

0%
100%

10.2%

75–99%

11.2%

50–74%

20.0%

25–49%

22.9%

Less than 25%

36.1%

5

Increasing Cloud Adoption
With public cloud adoption rising, organizations are slowly
transitioning workloads from on-premises to cloud-
hosted virtual machines, cloud-hosted container services
and cloud-hosted serverless platforms (see Figure 3).

As organizations move from on-premises infrastructure
to cloud-based services, operational complexity and
scale, development cost, compliance responsibilities
and security risk shift from your organization to the
cloud platform:

• On-premises—The organization needs to manage
everything, from soup to nuts.

• Cloud virtual machines—Responsibilities for data
center management and infrastructure provisioning
shift to the cloud provider.

• Cloud container service—Responsibilities for
patching the virtual machine and hardening the
container runtime shift to the cloud provider.
DevOps teams focus on the application and its
build/runtime dependencies packaged and shipped
in a Docker or CRI-O image.

• Cloud serverless—Responsibilities for hardening
container images and patching the underlying
application runtime shift to the cloud provider.
DevOps teams need to worry only about writing and
testing application code, the permissions associated
with the function’s service account and major
upgrades to the application runtime environment
(e.g., NodeJS 10.X to Node 12.X).

Using Netflix’s paved road metaphor, as organizations
shift from on-premises to cloud-managed workloads,
and as their responsibilities for operations and
security decrease, the road is less paved. The
technologies and architectures are more powerful, but
less understood and less mature. Organizations need
to make a trade-off between reducing development
and operational complexity and cost, and taking on
the security and compliance risks associated with each
managed cloud provider.

Extending DevSecOps Security Controls into the Cloud: A SANS Survey

Figure 3. Workload Methods

What percentage of your applications are running
in the following methods:

 <10%
 10–20%

 21–30%
 31–40%

 41–50%
 51–60%

 61–70%
 71–80%

 81–90%
 91–100%

Cloud-hosted
container service

35.9%
16.0%

9.2%
6.3%

3.4%
3.9%

1.9%
1.9%
2.4%

4.9%

Cloud-hosted
virtual machine

On-premises

24.8%

11.7%

15.0%

7.3%

14.6%

6.3%

8.7%

5.3%

9.2%

8.7%

6.3%

9.2%

2.9%

11.2%

1.0%

17.0%

3.9%

8.7%

5.8%

8.7%

Cloud-hosted
functions-as-a-

service (FaaS)
(serverless)

40.3%
18.4%

6.3%
4.4%
5.3%

1.9%
1.0%
1.5%
2.4%

1.5%
0% 10% 30%20% 40%

Paving the Road for Developers
At Netflix, one of the key responsibilities of the security team is
to build a “paved road” for developers and operations engineers
to use when they are coding, provisioning and deploying
online services. The paved road includes secure headers and
templates, secure-by-default frameworks and general-purpose
services, self-service security testing tools, and automated
compliance enforcement for different types of applications and
on different platforms.

When developers set off on a paved road, they know that they
will be able to move faster and safer at the same time.1

1 For more on Netflix’s paved road, see https://medium.com/@NetflixTechBlog/scaling-appsec-at-netflix-6a13d7ab6043

While on-premises application hosting is still the most
common means for delivery, cloud-hosted platforms
are gaining traction. Yet many security professionals
(36%) are spending less than 25% of their time building
a paved road for the cloud provider platforms. Security
professionals should prioritize and start evaluating the
security risks and considerations for the different cloud
platforms and architectures:

• Cloud virtual machines—This is the simplest
transition from on premises, but it pushes more
responsibility onto the organization to manage
cloud operations, security and automation. Each
cloud provider auto-provisions default network and
firewall rules for new virtual machines, which can
unintentionally expose private resources to the
outside world.

• Cloud container service—Security needs to be
managed all along the container life cycle. There
are lots of points where security risks can be
introduced, but also lots of tools available to help
manage risks, from code linters to container image
scanning, secure container repositories and runtime
security defense.

• Cloud serverless—In this case, security shifts
primarily to the application source code. Insecure
code and referencing vulnerable open source
libraries are the primary attack surface for
externally facing functions.2 Mature continuous
integration and delivery is the only way to scale
security and compliance with the volume of
functions required to power an application or
microservice.

6Extending DevSecOps Security Controls into the Cloud: A SANS Survey

Serverless Security Risks
Serverless platforms, also known as functions-as-a-service
(FaaS), are compelling for certain kinds of development and
cloud security work. Examples include AWS Lambda, Google
Cloud Functions and Microsoft Azure Functions.

In serverless environments, the majority of traditional security
controls are cloud-managed:

• Patching for virtual machines and container runtimes.

• Minor updates to the application frameworks are
automatically applied to the execution environment.

• Managed function service accounts are integrated into the
platform.

• Service account credentials are automatically provisioned and
rotated.

• Function audit logging and monitoring capabilities are
integrated into the platform.

However, depending on the cloud provider, many default
security settings are concerning:

• Warm start times (i.e., amount of time before the environment
is recycled) vary from 3 to 12 minutes, depending on the
provider. This creates an opportunity for attackers to store
malware in the execution environment.

• Service account credentials expiration windows range from 30
minutes to 12 hours, depending on the provider.

• Network security controls (e.g., egress firewall rules and
network logging) are disabled by default.

• Function service account permissions can be overly
permissive. For example, Google Cloud Functions default to
the Editor Role, which allows read and write access to existing
resources, while AWS and Azure follow a least privilege model.
Function permissions require disciplined automated and
manual security review.

2 See OWASP’s Serverless Top 10 for common security risks: https://owasp.org/www-project-serverless-top-10/

7

Cloud Platform Analysis:
The Big 3

The Big 3 cloud providers (AWS, Azure and GCP) continue
to dominate the public cloud space. Of 211 respondents,
only 59 (28%) reported running workloads in an alternative
cloud provider. Of those 59 respondents, 30 (51%) indicated
that less than 10% of their workloads are running in a cloud
provider that is not one of the Big 3. See Figure 4.

Further analysis of the Big 3 providers supports the 2019
Gartner cloud infrastructure as a service report.3 AWS, the
first major player in the public cloud offering, is being used
by 85% of the respondents, with 20% of these respondents
hosting more than 91% of their applications in AWS.

Microsoft Azure continues to close the gap, with 84% of
respondents using Azure. However, only 12% of those
respondents depend heavily (more than 91%) on Azure for
the running their workloads.

GCP remains a distant third, with only 65% adoption.
Perhaps the most telling gap in the numbers is that only 4%
of the GCP users depend on GCP for 91% of their workloads.

Benefits of Managed Container Services
Orchestrators such as Kubernetes play a critical role in the
deployment, operations and security of container-based
systems, especially at scale. But orchestrators
introduce a new set of risks that need
to be managed: operational complexity,
large attack surfaces, misconfiguration
and configuration drift, identity and
access management (IAM), and network
access management.

Containers (especially Docker) exploded
in DevOps teams before cloud services
for managing containers were widely
available. Heavy use of on-premises
orchestrators is a legacy technical debt
problem. Organizations that had early
success with containers had to put in

Extending DevSecOps Security Controls into the Cloud: A SANS Survey

3 “Magic Quadrant for Cloud Infrastructure as a Service, Worldwide,” www.gartner.com/doc/reprints?id=1-1CMAPXNO&ct=190709&st=sb
4 For more on multicloud security considerations, see www.sans.org/reading-room/whitepapers/cloud/top-5-considerations-multicloud-security-39505

[Registration required.]

Figure 4. Cloud Hosting Providers

What percentage of your cloud-based applications are hosted by:

 <10%
 10–20%

 21–30%
 31–40%

 41–50%
 51–60%

 61–70%
 71–80%

 81–90%
 91–100%

Amazon Web
Services (AWS)

21.8%
9.5%

5.2%
5.2%
6.2%

5.2%
5.2%

2.4%
7.6%

16.6%

Microsoft Azure

27.0%
10.4%

7.1%
6.2%

8.1%
4.3%

1.4%
4.7%
4.3%

10.4%

Google Cloud
Platform (GCP)

37.0%
10.4%

6.2%
2.4%
2.4%

1.4%
0.9%
0.5%
0.5%

2.8%

Other

14.2%
2.4%

1.4%
0.9%
1.4%
1.4%
0.9%
1.4%
0.9%

2.8%
0% 10% 30%20% 40%

Most organizations, especially large enterprises, need to work with multiple cloud
platform providers. SANS found that most organizations (92%) use at least one public
cloud provider, with slightly more than 60% having workloads running on three or
more public cloud providers, including AWS, Azure, GCP and a handful of others.

Multicloud is unavoidable:

• Organizations often choose the best service available, regardless of the provider
(e.g., AWS Lambda, Microsoft Azure Active Directory, or Google Kubernetes Engine).

• Enterprises need to manage systemic risk by spreading work across multiple
platform providers.

• Corporate mergers and acquisitions are a contributing factor to the rapidly
increasing cloud inventory.

This presents a major challenge for security professionals. As DevOps teams shift
right into multiple cloud providers, security teams must learn the security models,
risks and configuration options for each provider’s key service platforms.4

8

place orchestration solutions as the use of containers scaled up. Docker Swarm was
the easiest entry point for smaller teams and smaller systems, but the future of
Swarm is uncertain.5 For bigger teams
and bigger systems, Kubernetes became
the de facto standard.

Installing, configuring, hardening and
managing an on-premises Kubernetes
cluster is a heavy lift. For managing and
orchestrating containers, it makes much
more sense to shift responsibilities
right, to a proven cloud provider.

On-premises hosted Docker, Swarm
and Kubernetes installations require
organizations to manage the underlying
servers, container orchestrator,
container runtime and container life
cycle. Security teams are responsible for
understanding and implementing the entire set of CIS Benchmarks for Kubernetes
and Docker, each of which are more than 200 pages. For this reason, organizations
are starting to shift right. Respondents reported less on-premises use of Kubernetes
(32%) and Docker (35%) installations compared to the cloud-hosted options (42%
and 43%, respectively). See Figure 5.

More organizations (42%) are avoiding the complexity and overhead involved with
installing, managing and hardening Docker and Kubernetes services altogether. As
an alternative, they are running in cloud managed container services such as AWS
Fargate, Amazon Elastic Container Service (AWS ECS) and Microsoft Azure Container
Service to reduce operational costs, time and security risks:

• Kubernetes services removes the Kubernetes administration control plane,
such as server administration and hardening, from the organization’s
responsibility model. Once you provide the cluster’s YAML definition, you can
focus on the cluster config, execution role, image scanning, and setting up an
admission controller.

• AWS Fargate is serverless container orchestration. There is no central server
to manage and patch. Just provide a task definition with the image ID and the
number of desired containers to manage workloads, and it manages the cluster.

Extending DevSecOps Security Controls into the Cloud: A SANS Survey

5 Following its acquisition of Docker Enterprise and the enterprise customer base, Mirantis originally announced a sunset date for Swarm in 2021,
but now says that it will continue to maintain it for the foreseeable future.
www.mirantis.com/blog/mirantis-will-continue-to-support-and-develop-docker-swarm

Which container orchestration tools are managing your production workloads?
Select all that apply.

0% 20%10% 40%30%

Cloud-managed container service
(e.g., AWS ECS, AWS Fargate, Azure Container)

35.3%

10.4%

6.9%

Open Shift

Docker Swarm

Other

On-premises Kubernetes

Cloud-managed Kubernetes service
(e.g., AWS EKS/Fargate, Azure AKS, Google GKE)

Cloud-hosted Kubernetes
(e.g., EC2, Azure VM, GCE)

13.9%

32.4%

42.2%

43.4%

41.6%

29.5%

On-premises Docker Engine

Cloud-hosted Docker
(e.g., EC2, Azure VM, GCE)

Figure 5. Container Orchestration
Tools in Use

Takeaway

When shifting right, security’s
job gets simpler and more
focused. Let the cloud
provider manage the technical
complexity, operational risk, and
lockdown and hardening of the
containerized environment so
that the DevOps teams can focus
on delivering business features.

9

Programming Environments and Risks
As teams move to different platforms, their use of development tools, languages and
frameworks change to take advantage of new capabilities and conveniences. At the same
time, this introduces new security risks. See Figure 6.

Security practices and tooling must be adapted
to the needs of development teams as well as
the development environments, languages and
frameworks that these teams are using. While Java,
PHP and C/C++ continue to be major sources of
security risk based on their legacy use, common
cloud platform languages such as JavaScript/Node.
js and Python are increasing in use—and risk.6

Security at Velocity

The increased velocity of delivery is key to DevOps
success. Top-performing DevOps organizations
deploy changes across their infrastructure dozens
or hundreds or even thousands of times per day.

But working at high velocity forces organizations to
make compromises—and introduces risks:

• Agility vs. compliance—Hand-offs to security specialists, compliance reviews and
other manual checks waste time and disrupt flow. As teams speed up, security
testing must become self-service, automated as much as possible, and integrated
into engineering environments and workflows. Give engineering teams security
training, clear and measurable goals, and testable compliance requirements. Let
engineers choose when and where to enforce checks (e.g., in the IDE, during pull
requests or in CI/CD as part of the build pipeline). Implement automated checks to
enforce policies in development, testing and production.

• Speed vs. coverage—If teams are delivering changes several times a day, testing
(including security testing) needs to happen in minutes, not hours or days. Teams
cannot test the entire code base on every change and should not need to. Most
changes in iterative and incremental development should be small and reasonably
isolated. Focus reviews and testing on the areas of code recently changed, relying on
incremental scanning back-stopped by automated smoke tests on critical functions
and automated safety checks to catch common configuration errors.

• Accuracy vs. completeness—Tests must be accurate and consistently provide clear,
actionable feedback to developers (e.g., where the bug is, how to fix the bug and
why). Developers won’t have the time or skills to assess false positive findings from
scanning or testing.

Extending DevSecOps Security Controls into the Cloud: A SANS Survey

Figure 6. Riskiest Languages
and Platforms

Which languages and platforms in your application portfolio have
been the greatest source of risk or exposure to your organization?

Select your top three.

0% 20%10% 40% 60%30% 50%

.NET

31.0%

12.7%

12.0%

HTML

Android

C#

PHP

C/C++

Java

19.7%

26.1%

50.7%

33.8%

23.2%

Python

JavaScript 58.5%

6 Security risks with languages track popularity of use. See GitHub’s “State of the Octoverse” for tracking of development language use:
https://octoverse.github.com

10

To understand how organizations are making these risk trade-offs, we asked a series of
questions to learn:

• How often organizations are delivering changes to production

• How they are delivering these changes—that is, what technical practices and
toolchains they are using

• How often they are testing or assessing security

• What security controls they are relying on to manage security risks

We describe the survey results and our findings related to these questions in the
following sections.

Delivery Velocity Is Accelerating
The velocity at which organizations are delivering
IT changes continues to accelerate, as shown
in Table 1. This table provides a year-over-year
comparison of how often respondents deploy
system changes to production applications.

In the early days of Agile development, Scrum
teams and XP teams delivered working software
every month, which was considered radical at the
time. Today, almost three-quarters (74%) of organizations are delivering changes more
than once per month, an increase in velocity of 14% over the past four years.

To deliver changes at high velocity, DevOps teams follow a core set of common technical
practices and automation technologies.
Security and compliance can build on
and leverage these practices and tools—
if these practices and tools are in place
and working effectively. See Figure 7.

More than half of organizations are
following iterative, incremental design
and development using core Agile and
DevOps technical practices, such as CI
and automated builds.

However, almost half of organizations
are not using automated testing. This
implies that they are still relying on
manual testing (which doesn’t scale
and can’t keep up with rapid, iterative
development and delivery) or, worse,
they aren’t testing at all.

Extending DevSecOps Security Controls into the Cloud: A SANS Survey

Table 1. Delivery Velocity

2017Frequency of Delivery to Production 20202018

Continuously (several times per day)
Daily
Weekly
More than once per month
Monthly
Quarterly
More than once per year
Annually
Other (ad hoc/more than once per year)

5.3%
12.0%
25.4%
17.7%
18.7%
13.4%
3.8%
1.9%
1.9%

10.0%
7.0%

24.0%
25.0%
15.0%
11.0%
4.0%
1.0%
3.0%

11.1%
12.1%
31.4%
19.8%
11.1%
6.3%
3.9%
1.0%
3.9%

Figure 7. Technical Practices and
Automation Technologies in Use

Which of the following practices does your organization follow? Select all that apply.

Continuous integration

56.7%

38.5%

37.5%

24.0%

19.2%

2.9%

Continuous Delivery

Immutable infrastructure provisioning

Other

Blue/green deployments

Continuous deployment to production

Programmable configuration management/
Infrastructure as code

Automated testing

Automated deployment

Build automation

48.6%

53.4%

60.6%

61.5%

60.1%

51.4%

Proactive monitoring/Measurement of systems
in production

Iterative/Incremental design and development

0% 10% 30%20% 40% 60%50%

11

And only 38% are provisioning and configuring infrastructure using modern programmatic
tools, such as Chef, Terraform or AWS CloudFormation, instead of point-and-click admin
console interfaces. Examples include the following:

• Configuring through code, rather than manually, is a prerequisite for leveraging
cloud services at scale. Code-based changes are versioned, testable, auditable and
repeatable.

• Configuring cloud infrastructure in code creates a control structure for security
and compliance. Configuration changes can be checked into version control, and
automatically scanned and tested using CI/CD build pipelines to catch configuration
errors and enforce hardening policies.

However, there is a high learning curve associated with understanding cloud services
and cloud infrastructure coding languages, practices and tools at the same time. DevOps
maturity plays a part in this. If the engineering culture is code-driven already, it lends
perfectly into programmatic cloud infrastructure.

Automated build and delivery, using CI/
CD tooling, is key not only to speed but also
reducing risk. Automation is predictable, scalable,
reproducible and auditable.

Most organizations (56%) continue to rely on
open source, on-premises tools, such as Jenkins,
to automatically build and deploy code changes.
But more modern cloud-hosted solutions
(54%) and cloud-native tools are being widely
adopted, at 49% (see Figure 8). These cloud platforms enable DevOps teams to shift
right—offloading the responsibilities and costs for provisioning, configuring, hardening,
monitoring and managing these tool sets onto the cloud service provider—reducing
operational complexity and risk. DevOps teams can focus on their builds, designing and
optimizing their workflows, instead of the undifferentiated heavy lifting of infrastructure.

GitHub and GitLab are rapidly releasing security
features in their automated CI/CD offerings.
Examples of these features include automated
static analysis, source code component analysis
and dynamic application security testing (DAST).
Security and development teams can easily
leverage these features to shift security left and
keep up with the velocity of change.

Is Security Keeping Up
with the Velocity of Change?
The faster that engineering and development teams deliver changes, the faster security
teams need to identify and assess risks. See Figure 9.

Extending DevSecOps Security Controls into the Cloud: A SANS Survey

Which Continuous Integration tools are you using to automate your build
and release workflows? Select all that apply.

0% 10% 40%30% 60%50%20%

Cloud hosted
(e.g., GitHub Actions, GitLab CI)

35.0%

Other

Cloud native (e.g., AWS CodePipeline,
Microsoft Azure DevOps)

4.6%

53.8%

56.3%

49.2%

On-premises commercial

On-premises open source
(e.g., Jenkins)

Figure 8. Continuous Integration
Tools in Use

Figure 9. Velocity of Delivery vs.
Velocity of Security Assessment

Velocity of Delivery vs. Velocity of Security Assessment

30%

20%

10%

0%
More than once

per month

19.8%

10.5%

Weekly

31.4%

15.1%

Daily

12.1%

7.9%

Continuously
(several times per day)

11.1% 11.8%

 Delivery Security Testing

12

By comparing the velocity of delivery to the velocity of security testing, as shown
in Figure 9, we can see that most organizations are unable to keep up with the
pace of delivery:

• Although a small number of practice leaders are delivering and testing
continuously, in all other cases the frequency of security testing
significantly trails delivery.

• A significant number (39%) of organizations are still relying on point-in-
time or ad hoc security testing, which leaves them without a clear picture
of security risk or the ability to manage these risks.

• What is more concerning is that 27% of organizations do not perform
security assessments at all.

When Is Security Testing Performed in DevOps?
As organizations shift left, they need to add security testing and reviews into
development and DevOps team workflows, as part of analysis, design, coding
and testing. As shown in Figure 10, security testing is being done at multiple
points in most organizations, from upfront
requirements to design, through coding and
developer/QA testing workflows, and into the
pre-deployment and deployment stages.

However, fewer than half of organizations
(40%) have shifted security testing and
reviews left into upfront requirements
and design, where McGraw’s Law tells us
that roughly half of security problems
(design flaws) are introduced.7 This is when
important—and expensive—fundamental
decisions need to be made about
architectural approach, platform choice,
development environments, languages
and frameworks. These decisions can have
serious operational, security and compliance consequences.

Mistakes and misunderstandings made at these early points will need to be
caught later—in QA or acceptance testing, pre-deployment reviews or after the
code is already in production—where the costs and consequences of dealing
with these problems are much higher.

Extending DevSecOps Security Controls into the Cloud: A SANS Survey

When do you perform security testing in your build and release pipelines?
Select all that apply.

0% 20%10% 40%30% 50%

Unit testing 36.2%

40.8%Coding

33.6%Preproduction gate

Continuous security compliance 45.4%

Code commit/Pull request 35.5%

Requirements/Use case 39.5%

Architecture/Design 43.4%

34.9%Deployment/Rollout to production

QA/Acceptance testing 48.0%

Figure 10. Timing of Security Testing
in Development/Deployment

7 The fundamental differences between security bugs (mistakes in coding) and flaws (mistakes in requirements and design) was first examined in
Dr. Gary McGraw’s book Software Security: Building Security In, www.swsec.com

13

DevSecOps Tools and Practices: Shift Left or Shift Right?
Organizations can use a wide range of security tools and practices to understand and
manage security risks, both early in development and later in operations.8 We asked
respondents to rank security tools and practices from most useful to least useful
(with 1 being most useful) and then looked at this list—from planning through to
deployment and operations—through the shift left (Dev) and shift right (Ops) lenses.
(See Table 2 and our findings as described in the feature “Shift Left vs. Shift Right
Analysis” on the next page).

Extending DevSecOps Security Controls into the Cloud: A SANS Survey

8 SANS has mapped security practices and open source tools in a secure DevOps toolchain, found at
www.sans.org/security-resources/posters/cloud-security-devsecops-practices/200/download [Registration required.]

Table 2. Usefulness of Security Testing Practices/Tools and Position in Development Cycle

Planning Analysis Design Coding Testing Deployment Operations

1

2

3
4

5

6
7
8

9
10
11

12

13

14
15
16

17

18
19
20
21

22
23

Upfront risk
assessments

Security training for
developers

Security stories

Threat modeling

Dependency
analysis SCA

Manual code review

Container scanning

DAST

IAST

Continuous
vulnerability
scanning

Configuration
security monitoring

Periodic vulnerability
scanning

WAF
Third-party
penetration testing
NDR/NTA

Third-party
compliance reviews
Internal penetration
testing
NGAF/NGWAF

File integrity
monitoring/HIDS

Virtual patching

Container runtime
security
RASP
Bug bounties

14Extending DevSecOps Security Controls into the Cloud: A SANS Survey

Shift Left vs. Shift Right Analysis
• Looking at the top 10 practices shown in Table 2 on the previous page, there is roughly an

even split between shift left (Dev) and shift right (Ops).

• Configuration security monitoring (CSM) tools ranked highest on the list. According to
OWASP, security misconfiguration in applications and cloud deployment is the most
common security issue in modern online applications.9 CSM tools—automatically verifying
configuration settings and enforcing security hardening and compliance policies—
continuously validate and audit security controls and prevent configuration drift. These
tools can catch common but dangerous mistakes, such as insecure defaults, missing
credentials, confidential data exposed on publicly accessible storage, inadequate
encryption and logging, and so on. As cloud providers offer more services, there is more
configuration work to do—making CSM even more important.

• Although most security tools and practices are targeted to operations (not development),
it is clear that organizations recognize the value of shifting security left into early stages of
planning, requirements and design. Upfront risk assessments and threat modeling were,
respectively, the second and third most useful practices identified. However, as we saw in
Figure 9 earlier, fewer than half of organizations actually conduct security testing or reviews
during requirements analysis and design.

• Security training for developers continues to be one of the most valuable practices and is
key to shifting left. Organizations cannot expect developers to take more responsibility for
security if they don’t have the skills to do so.

• It is becoming a mainstream practice to automate container/image scanning to catch
vulnerabilities in image layers and container configuration. These scans can be added
into CI/CD pipelines, as an admission control step in image registry pulls, or included in
continuous vulnerability scanning.

• Network detection and response (NDR) and network traffic analysis (NTA) capabilities are
important for understanding, managing and securing east–west network communications
in hybrid cloud architectures and container-based microservices. They provide deep
visibility into network traffic and using machine learning to identify threats and attacks
as they occur. Public cloud provider traffic-mirroring services have made it easy to deploy
these technologies as part of a shift right approach to operational security.

• Manual code reviews are a valuable security control for shifting left. As security teams
continue to apply DevOps practices to security workflows, manual code reviews become
easier to enforce with branch protections and mandatory pull requests.

• Security teams still lean heavily on point-in-time assessments (e.g., periodic vulnerability
scanning, third-party penetration testing), even though these practices can’t keep up with
rapid, continuous change. As delivery speeds up, security will need to shift to continuous
vulnerability scanning and rapid, in-phase testing approaches (e.g., IAST).

• As we saw in our previous survey from 2018,10 while bug bounties (ranked last in the list of
security practices in both surveys) receive a lot of media attention, they are difficult to set
up and run in practice.

9 https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A6-Security_Misconfiguration
10 “2018 Secure DevOps: Fact or Fiction?” November 2018, www.sans.org/reading-room/whitepapers/cloud/paper/38690 [Registration required.]

15

Next, we wanted to understand
how organizations are managing
and conducting their security
programs. Is security in
organizations still siloed or are
responsibilities for security
shifting left, from security and
compliance teams to business
unit owners (who determine
priorities and hold the budgets)
and development or DevOps
teams? See Table 3.

Now, let’s shift right and look at how quickly and
effectively organizations deal with security issues
in operations.

How Are Security Vulnerabilities
Being Managed in Operations?
Figure 11 indicates that less than half of
organizations are repairing all, or almost all,
critical vulnerabilities satisfactorily and in a
timely manner. This has serious implications for
the security of production systems, especially
those that are mission critical. When serious
vulnerabilities are found in production, teams
must be able to respond and patch quickly in
order to close the window of exposure11 and
outrace attackers, and stay in compliance.

Extending DevSecOps Security Controls into the Cloud: A SANS Survey

Table 3. Testing and Remediation Roles vs. Responsibility

ManagingRole Accepting
Corrective

ActionsConducting

Business unit owner 39.3% 12.6% 52.6% 26.8%
Commercial application vendors 17.4% 23.4% 19.4% 33.3%
Cross-functional teams in DevOps or DevSecOps 28.8% 38.1% 29.4% 39.2%
Development team 28.8% 38.1% 36.8% 63.3%
External security consultants 8.5% 42.8% 13.2% 9.2%
Internal security team 50.1% 65.4% 34.1% 22.6%
Quality assurance 17.9% 33.4% 28.8% 18.1%
Security architect 42.1% 38.8% 28.8% 24.1%
Security-as-a-service (cloud) providers 13.4% 29.5% 17.3% 22.0%
System architect 33.9% 35.9% 31.5% 36.0%
Other 4.6% 2.2% 2.6% 2.7%

What percentage of critical security vulnerabilities does your organization
repair satisfactorily and in a timely manner?

0% 10% 30%20% 40%

50–74%

12.2%

3.4%

None

Unknown/Uncertain

10–24%

1–9%

75–99%

0.7%

8.8%

40.1%

8.2%

25.9%

0.7%

25–49%

100%

Figure 11. Percentage of Security
Vulnerabilities Repaired in a Timely Manner

Takeaway

Security teams (internal and/or external consultants or service providers)
still primarily own responsibilities for conducting security testing in most
organizations. To scale, organizations need to shift more responsibilities
for security testing onto development or DevOps teams. Although there
are some technology problems to solve here, such as integrating testing
tools and practices into automated workflows (as we will see later in this
analysis), the major barriers to shifting security testing to developers are
not technical; they are organizational.

11 Security researcher and thought leader Bruce Schneier coined this term: www.schneier.com/crypto-gram/archives/2000/0915.html

16

As Figure 12 shows, more than two-thirds of
organizations are patching critical vulnerabilities
within 30 days (a common cutoff for regulatory
compliance). As organizations continue to adopt
DevOps practices, we expect this to improve as
organizations leverage investments made in CI/CD
tooling, automated testing and automated deployment
to reduce risks and costs of patching.

The time needed to fix critical security vulnerabilities
is a key metric for determining the success of a
security program, and the organization’s ability to
successfully shift right, by:

• Leveraging the cloud platform’s managed
infrastructure controls to clearly identify what
needs to be patched

• Leveraging DevOps technical practices and
automated build and deployment (CI/CD)
toolchains and technologies, such as continuous
delivery and containers, to minimize the work
and risks involved in building, testing and
releasing patches

• Relying on cloud platform providers to
automatically patch managed infrastructure
services and underlying hosts

As shown in Figure 13, the “Number of security
issues discovered after deployment” (measuring the
vulnerability escape rate to production) and “Post-
audit remediation steps required” are important in
evaluating the effectiveness of the organization’s
shift left security controls. They are also important
for assessing changes or improvements made to the
Dev side of the security program. Organizations can
use this to identify weaknesses and gaps in training,
reviews or testing, and build a case for upfront
investments in secure development practices.

Extending DevSecOps Security Controls into the Cloud: A SANS Survey

On average, how long does it take for your organization
to fix and deploy a patch to a critical application security

vulnerability for systems already in use?

0% 20%15%10%5% 30%25%

2–7 days

29.1%

2.7%

2.0%

8.1%

6 months to 1 year

Unknown/Uncertain

More than a year

Other

31 days to 3 months

3–6 months

Next day

2.7%

14.9%

4.1%

8.1%

26.4%

2.7%

8–30 days

Same day

Figure 12. Time to Fix and Patch a
Critical Vulnerability

What are the major KPIs you use to measure the success of your
DevSecOps activities? Select all that apply.

0% 20% 60%40%

Time-to-detect security issues

35.8%

3.7%

Builds failed due to security issues

Other

Post-audit remediation steps required

Builds delayed due to security issues

Number of security issues discovered
after deployment

24.6%

35.1%

51.5%

64.2%

47.0%

29.1%

Human hours spent resolving
security issues

Time-to-fix security issues

Figure 13. KPIs in Use to Measure
DevSecOps

17

The other measurements, including failed or delayed builds, and the time spent to
detect or resolve security issues, relate to the efficiency of security controls. They help in
identifying opportunities for automation and other optimizations in security workflows.

What It Takes to Successfully
Shift Left and Shift Right

Both technical and organizational
factors are important to the
success of DevSecOps programs.

The major challenges to
implementing DevSecOps in
organizations are fundamentally
organizational, from insufficient
budget and shortage of security
skills and security training,
to organizational silos, poor
prioritization, and lack of buy-in by
management and by development
teams. See Figure 14.

Extending DevSecOps Security Controls into the Cloud: A SANS Survey

Takeaway

Shift left (i.e., implementing security reviews and testing as part of development) is
not keeping up with the velocity of delivery. This increases the risks of critical security
vulnerabilities making it to production.

To compensate, security has to shift right (i.e., be prepared to identify and respond to
problems immediately) through:

• Monitoring telemetry and feedback loops to detect attacks and exploits

• Operational incident response capabilities to escalate problems and risks

• CI/CD build pipelines and programmable infrastructure to get patches out quickly

• Root cause analysis to improve systems and organizational capabilities

• Compliance and monitoring solutions that not only evaluate cloud-based desired state
configuration, but also provide event triggers for automating notifications, creating
tickets and even remediating noncompliant resources

What are your top three challenges (e.g., barriers) in implementing DevSecOps
at your organization?

Technical debt and security debt in legacy environments

29.9%

20.1%

20.1%

11.1%

10.4%

9.7%

6.9%

4.9%

2.1%

1.4%

Lack of management buy-in

Other

Lack of security tool support for languages, platforms

Security testing tools are too slow

Inadequate test automation

Security testing tools are inaccurate/unreliable

Lack of transparency into Dev/Ops work

Lack of developer/engineer buy-in

Changing requirements and priorities

Supply chain risks in components, APIs

Inadequate/ineffective security training

Compliance risks/uncertainties

Organizational silos

20.8%

27.8%

39.6%

44.4%

29.9%

20.8%

Shortage of application security personnel/skills

Insufficient budget/funding

0 10% 30%20% 40%

Figure 14. Top Challenges in Implementing DevSecOps

18

As we explored in the 2018
DevOps survey, lack of tools or
poor technical practices are
not holding up the success
of DevSecOps programs as
much as management factors.
Organizations can overcome
internal management barriers,
cultural inertia and legacy debt
by shifting more operational
responsibility into the cloud, and
in the process, become more
agile and more secure.

Management factors are not only
barriers, but also key enablers
of success. Securing buy-in
from managers and developers,
and improving communications
across disciplines (e.g., development, operations and security) are the most important
factors for the success of security programs. See Figure 15.

Automating build and deployment steps, and integrating security testing into DevOps
workflows, are also prerequisites to the success of security programs. Security and
compliance teams need technical fundamentals, such as build and test automation, CI/CD
pipelines, and programmatic infrastructure, in place from DevOps teams to successfully
shift security left.

Conclusions/Moving Forward

Most organizations need to make fundamental changes to make secure DevOps a
reality. To make the changes required, there are two approaches that DevSecOps
teams can follow:

• Shift left—Initiate change from the bottom up, building on technical disciplines and
practices and especially on automation. Foundational technical practices—such
as automated build and delivery pipelines (CI/CD), test automation (test-driven
development [TDD], behavior-driven development [BDD]), pair programming and
pull request reviews, and configuring infrastructure in code—all enable DevOps
teams to move faster and deliver working software. These practices also provide a
control plane where teams can insert security checks and tests. And they support
and reinforce consistency, transparency and accountability, helping to encourage
and sustain longer-term, deeper changes in the ways that people think and work
across the organization.

Extending DevSecOps Security Controls into the Cloud: A SANS Survey

What do you consider the top three factors that have contributed to your success?

Securing developer buy-in

28.9%

17.6%

15.5%

14.1%

13.4%

11.3%

2.1%

Creating “security champions” in DevOps teams

Creating cross-functional DevSecOps teams

Following a common compliance framework

Secure by Default templates

Other

Sharing goals/CSFs across disciplines

Clear definition of success and ability to
measure

Integrating security into DevOps workflows

Security training for DevOps teams

Improving communications across disciplines

19.7%

20.4%

39.4%

52.8%

33.1%

20.4%

Automated build/deployment

Securing management buy-in

0 10% 30%20% 40% 50%

Figure 15. DevSecOps Success Factors

19

• Shift right—Offload operational, security and compliance risks and obligations onto
the cloud provider. This approach takes advantage of the cloud provider’s scale,
resources and agility to solve problems and compensate for the organization’s
weaknesses. This frees up scarce security and development resources to focus on
important priorities and risks.

You need to shift right, offloading operational security and compliance responsibilities
to the cloud platform, in order to successfully shift left. Shifting right reduces complexity
and cost, and shrinks the security problems and risks that you need to manage, so that
you can focus on making your security training, testing and reviews more targeted and
realistic, which will increase your chances of success.

Extending DevSecOps Security Controls into the Cloud: A SANS Survey

Shift Right in Order to Shift Left
Shift left is not about throwing security and compliance problems over to developers. Shift
left involves:

• Enabling development teams, giving developers the training, tools and time to do a good
job of designing, building and delivering high-quality, reliable and secure services

• Leveraging DevOps investments in automation and tooling to build a control plane for
security and compliance

• Helping DevOps teams understand security risks and compliance requirements and how to
manage them in the most effective and efficient ways possible.

Shift right is not about leaving security risks until it’s too late. Shift right involves:

• Taking advantage of cloud platforms, getting maximum leverage from the strengths and
capabilities that the platforms offer for resilience, scale, security and compliance.

• Shifting responsibility to managed cloud platforms, rather than re-inventing the wheel, to
help security and compliance move at the speed of DevOps

• Collecting attack data, threat intelligence to identify real risks and attack vectors that need
to be defended—learning where to focus training, testing and reviews

• Using data about vulnerabilities escaping to production to understand weaknesses and
gaps in understanding, in testing and controls, and shifting left again to improve your
processes’ design and tooling

KPIs such as time to fix security problems and escape rate to production help you determine
whether to shift left and try to prevent/catch problems up front through better training
and better tooling in the development workflow, or to shift right and add protection at
deployment and runtime.

20

About the Authoring Team

Jim Bird, SANS analyst and co-author of SEC540: Cloud Security & DevOps Automation,
is an active contributor to the Open Web Application Security Project (OWASP), and an
author of books on Agile Security and Secure DevOps. He has worked at major technology
organizations and financial institutions around the world in management, software
development, operations, and IT and application security.

Eric Johnson is a Principal Security Engineer at Puma Security and SANS Senior Instructor
focusing on cloud security, DevSecOps automation, and building static analysis tools. His
experience includes application security automation, cloud security reviews, static source
code analysis, web and mobile application penetration testing, secure development
lifecycle consulting, and secure code review assessments.

Frank Kim leads the management and software security curricula for SANS, developing
courses on strategic planning, leadership and application security. He is also a SANS
Faculty Fellow, helping to shape, develop and support the next generation of security
leaders. Previously, Frank served as CISO at the SANS Institute, leading its information risk
function, and executive director of cybersecurity at Kaiser Permanente, where he built an
innovative security program to serve one of the nation’s largest not-for-profit health plans
and integrated healthcare provider. Currently, as founder of ThinkSec, a security consulting
and CISO advisory firm, Frank helps leaders develop business-driven security programs.

Sponsor

SANS would like to thank this paper’s sponsor:

Extending DevSecOps Security Controls into the Cloud: A SANS Survey

https://www.sans.org/cyber-security-courses/secure-devops-cloud-application-security/
https://www.sans.org/profiles/eric-johnson/
https://www.sans.org/profiles/frank-kim/
https://www.extrahop.com

