
SECURITY ADVISORY

SECURITY ADVISORY

Insecure Protocol Usage 
Exposes Organizations 
to Cybersecurity Risk

EXECUTIVE SUMMARY
As organizations around the world have learned the hard way in recent years, insecure protocols with known vulnerabilities 

expose your business to serious cyber risk. But even in the wake of costly events like WannaCry and NotPetya, many 

organizations still allow—knowingly or unknowingly—insecure and deprecated protocols to run in their environments. In this 

report, we explore some of the most common insecure protocols still in use, assess the risks associated with them, and provide 

guidance to security and IT operations teams about how to find and eliminate these vulnerabilities within their environment.



TABLE OF CONTENTS

Introduction  3

What’s in a Protocol? 4

Server Message Block (SMB)v1 4

How Common is SMBv1?  5

In the Wild: SMBv1  6   

The Risks of SMBv1 7  

Link-Local Mulicast Name Resolution (LLMNR)  8

How Common is LLMNR?  8

The Risks of LLMNR 8   

New Technology LAN Manager (NTLM)v1  10

How Common is NTLMv1  10 

The Risks of NTLMv1 11  

Plaintext Credentials of Hypertext Protocol (HTTP)  12

How Common is Plaintext over HTTP?  12

In the Wild: Plaintext Credentials over HTTP   12 

The Risks of Plaintext Credentials over HTTP 13  

A Note on TLS 1.0/1.1  13     

How to Determine Whether You’re Running Insecure Protocols  14  



INTRODUCTION

On May 12, 2017, the WannaCry ransomware variant spread like wildfire, infecting and 

encrypting over 230,000 computers at public- and private-sector organizations worldwide, 

and inflicting hundreds of millions, if not billions, of dollars in damage. Less than two short 

months later, another ransomware attack, NotPetya, again ripped its way through global 

organizations, temporarily crippling the shipping industry and costing Maersk $300 million 

alone.

What NotPetya and WannaCry have in common, beyond the size and scope of the damage 

they were able to inflict, is that they exploited the same vulnerabilities in the Microsoft Server 

Message Block version one (SMBv1) protocol, an exploit known as EternalBlue. What makes 

these attacks particularly poignant and painful is the fact that they could have been avoided.

It’s common knowledge that EternalBlue was an exploit developed by the National Security 

Agency (NSA). The NSA used this exploit for the better part of five years before disclosing its 

existence to Microsoft, which promptly issued a patch in March of 2017, two months before 

WannaCry. Advanced threat actors are not looking for advanced technology. Quite the 

opposite, they are looking for the weakest link in an enterprise, making outdated, 

fundamentally-insecure protocols especially compelling.

If the issuance of the patch and corresponding alert from Microsoft wasn’t enough to achieve 

widespread patching, the April 14, 2017 disclosure of the vulnerability by a group called 

Shadow Brokers should have made clear the severity of the vulnerability. And yet, a month 

after the vulnerability was made public, it was exploited to maximum effect by the WannaCry 

perpetrators. That it happened again just six weeks later makes it all the more painful.

And yet, today, four years after these devastating attacks took place, ExtraHop research 

found that SMBv1 is still surprisingly common in enterprise environments. Almost 90% had 

at least one device still running the protocol. And it’s not just SMBv1. Other insecure 

protocols, including the Link-Local Multicast Name Resolution (LLMNR) protocol and the NT 

LAN Manager (NTLM) protocol, are still in use. And while not inherently insecure, HTTP, 

which is deeply problematic when used for transmission of sensitive data, is still widely used 

in enterprise environments.

In this report, we’ll provide insight into how common these insecure protocols are within the 

enterprise, the risks associated with each, and provide recommendations for eliminating 

these weak points from your environment.



What’s in a Protocol?
Protocols are the lingua franca of the network, allowing connected devices to communicate 

with each other regardless of differences in operating systems, hardware, and processes. 

Protocols work by establishing a set of rules for how data is transmitted between different 

network devices, and include everything from how that data is protected (encryption) to how 

domains are resolved. While protocols for network communication can be updated and 

refined, and new ones can be created, many protocols in common use today have been 

around for decades.

Different protocols are used in different ways, both by IT teams and malicious actors. For 

example, the Domain Name System (DNS) protocol makes navigating the internet easier for 

users by mapping IP addresses to human readable domain names, but is frequently misused 

by attackers for malicious purposes such as command and control (C2) and data exfiltration.

You can learn more about protocols and threat activities associated with them by visiting the 

ExtraHop Network Protocol Library.

This report focuses specifically on four of those protocols: SMBv1, LLMNR, NTLM, and HTTP, 

the prevalence of these protocols within enterprise IT environments, and the risks associated 

with each.

Server Message Block (SMB) v1
Server Message Block (SMB) is a protocol that was developed in the 1980s and is used 

primarily for sharing things like files, printer services, and communication between networked 

devices. During the 1980s and 1990s, Microsoft attempted to rebrand SMBv1 under the 

name Common Internet File System (CIFS) and expanded its capabilities to include the 

transmission of large files and the establishment of direct connections over port 445.

As it turned out, SMBv1 (CIFS) was notoriously buggy, chatty, and difficult to use, and had 

major security deficiencies. When Microsoft introduced SMBv2 in 2006 they abandoned the 

CIFS nomenclature altogether. Six years later, in 2012, Microsoft introduced SMBv3, and in 

2013 the company officially deprecated SMBv1.

Despite the deprecation, Microsoft continued to install SMBv1 on its Windows Servers until 

2016. By that time, Microsoft was actively urging the Microsoft user community to stop using 

SMBv1, but with millions of machines using the protocol, many of the warnings, including 

those from within the Windows Server engineering group, went unheeded. This is why, when 

EternalBlue and related exploits—known collectively as Eternal(x)—came to light in 2017, 

SMBv1 was still pervasive in IT environments around the world. The Eternal(x) vulnerabilities 

exploit a buffer overflow vulnerability in SMBv1.

How Common is SMBv1?
Based on research conducted by ExtraHop in the first three months of 2021, 88% of

environments have at least one device running SMBv1. While that might seem like a staggering 

number, the good news is that in the cases where it’s just one device, this is probably

intentional. Red teams still use SMBv1 as a tool in penetration testing exercises, which 

probably accounts for those environments with just one instance.

The problem is that 67% of environments have at least 10 devices running SMBv1 and that’s 

likely not intentional. While 10 devices might seem like a relatively small number, the remote 

code execution enabled by Eternal(x) exploits makes any device running SMBv1 an easy pivot 

point from which to launch a large-scale attack. These 10 devices might be a tiny fraction of

the assets in an environment, but defense is a zero-fail mission. SMBv1 doesn’t need to be 

installed on every device in the environment to be used to launch a catastrophic attack. It only

needs to be on one.

The numbers only get scarier from there. According to ExtraHop data, 37% of environments 

have at least 50 devices running SMBv1, and 31% of environments have 100 or more 

devices still using the protocol four years after WannaCry and NotPetya rocked the world.

In the Wild: SMBv1
A High Stakes Gamble

In early 2019, almost two years after the EternalBlue vulnerability came to light, ExtraHop 

was working with a branch of a US Federal Agency. The agency was aware that it still had 

machines running SMBv1. What they didn’t know was which machines, or how many.

Their challenge was two-fold. First, the reason they were still running SMBv1 is because so 

many of their legacy systems used the protocol. Getting rid of it was a massive logistical 

undertaking, as many of their systems still ran on Windows XP, which couldn’t use later

versions of the protocol. However, they’d recently been advised by their NAS vendor that 

the vendor was going to stop supporting the SMBv1 protocol.

Second, while they had continued using SMBv1 long after its vulnerabilities (and the damage 

that could be wrought through their exploitation) had come to light, they were well aware of

the risks associated with the protocol. 

The security team at the agency used their SMB/CIFS Dashboard in Reveal(x) to pull up all 

devices running SMBv1. They quickly found that they still had a large number of devices 

using the protocol, including their entire VDI deployment. This protocol exposed the branch 

of the agency to huge risk of a fast-moving ransomware attack, among other things.

While the transition away from SMBv1 took effort, the move ultimately meant a more secure 

environment for the agency. Unfortunately, the ongoing use of legacy systems that don’t 

support later versions of the SMB protocol are a major reason that many organizations 

remain exposed to Eternal(x) exploitation.

A Brush with Ransomware Four Years After WannaCry

In March 2021, news broke that Taiwanese computing giant Acer had been severely

compromised by ransomware. The $50 million ransom demand was the largest in history, 

and REvil, the cybercriminals responsible for the attack, had architected a trump card. Not

only had their attack encrypted a large percentage of the company’s files, they had also 

exfiltrated huge quantities of data. In the event Acer had a back-up, they could still extract 

the ransom by threatening to leak the stolen data.

The exfiltrate-then-encrypt play is becoming increasingly common in ransomware attacks as 

cybercriminals try to maximize their leverage. Just a few months before the disclosure of the 

Acer attack, an ExtraHop customer experienced a very similar attack.

In late 2020, a large ExtraHop customer based in North America was alerted to a 

Ransomware Activity detection in Reveal(x) 360. The same devices were also seeing alerts 

for detections on SMB data staging and suspicious file reads. By looking at Related 

Detections, the customer’s security team determined that the attackers were also in the 

process of exfiltrating data before they encrypted it in an effort to inflict maximum damage.

The team was able to quickly identify and quarantine affected assets and accounts, and as a 

result, the attackers were only able to encrypt a small percentage of targeted files.

While the customer averted disaster in this case, it serves as a cautionary tale, not only

about the new ransomware playbook, but about the ongoing risks associated with SMBv1. 

Devices running this protocol remain an easy target for attackers, especially ransomware 

gangs more interested in money than in information.

You can read more about this ransomware trend here. 

The Risks of SMBv1

The reason that SMBv1 has been so successfully exploited for attacks like WannaCry and 

NotPetya is that, if an attacker can successfully access a server with SMBv1 enabled, they

can quickly spread malware to other unpatched servers across a network. In an 

SMBv1-based attack, the attacker sends multiple requests, or messages, to a file server over

SMBv1. Each SMBv1 message is specially designed to manipulate the file server memory in a 

way that eventually causes a buffer overflow, which enables the attacker to deliver a 

malicious payload, such as ransomware, to the kernel of the server.

Buffer Overflow attacks of system level services are particularly dangerous because they

provide attackers with a wide latitude for follow-on activities such as injecting malicious 

payloads, scraping user credentials from memory, and setting up hidden persistence 

mechanisms that reside only in memory.

INSECURE PROTOCOL USAGE EXPOSES ORGANIZATIONS TO CYBERSECURITY RISK  |   SECURITY ADVISORY     4

Link-Local Multicast Name Resolution (LLMNR)
Link-Local Multicast Name Resolution (LLMNR) is a protocol that allows name resolution 

without a DNS server. Essentially, LLMNR is a layer 2 protocol that provides a hostname-to-IP

resolution on the basis of a network packet that’s transmitted via Port UDP 5355 to the 

multicast network address (224.0.0.0 through 239.255.255.255). The multicast packet queries 

all network interfaces looking for any that can self-identify authoritatively as the hostname in 

the query.

LLMNR is distinct from other protocols described in this report, in that it was never adopted as 

an IETF standard protocol (although it was defined in RFC 4795).

LLMNR was originally created as a workaround to enable name resolution in environments in 

which DNS servers would be impractical, such as small private networks. LLMNR was created 

as a way to achieve name resolution without the onerous requirements of DNS. The protocol 

has been (and still is) used by operating systems, including Microsoft Windows, to identify

networked devices like file servers.

How Common is LLMNR?
For a protocol that’s not quite a protocol—and a very risky one at that—it’s usage is still 

surprisingly common. De-identified network telemetry from ExtraHop Reveal(x) shows that 

70% of enterprise environments have at least 10 clients still running LLMNR. Unfortunately, as 

the device counts go up, the number of environments with vulnerable clients doesn’t decline 

by much. Fifty-five percent of environments have fifty or more LLMNR clients, while 46% have 

more than 100 such clients.

The Risks of LLMNR
While LLMNR provides a DNS-free mechanism for host-name resolution within a local 

environment, it also provides an avenue of attack for malicious actors. An attacker can use the 

protocol to trick a victim into revealing user credentials. This is done by leveraging LLMNR to 

gain access to the user credential hashes, which can then be cracked to reveal actual 

credentials, especially if older MS password techniques like LANMAN are not disabled.

How does this work if you’re the attacker? The first step is to configure a node on the network 

to answer that it is the hostname associated with any query. For the requesting client, this 

creates a race condition in which the client will not only accept, but trust whichever device 

answers first. This is because the protocol specifications of LLMNR state that all client

responses are trustworthy.

This is when credential hashes come into play. When the client receives a definitive “It’s me!”

from a compromised device, it automatically sends a hashed copy of the current user's 

credentials as part of the response. This provides the attacker with a hashed copy of the 

credentials which can be decrypted, or leveraged via pass-the-hash attacks to begin 

escalating privileges within the broader network.

While DNS is not without its challenges, it’s a far more secure way to accurately identify host

names. With that said, DNS should be carefully monitored to ensure that it is not itself being

utilized for nefarious purposes. 

Fig. 4 When a DNS request for a hostname cannot be resolved or a DNS server is unavailable (1), clients with LLMNR enabled 

will broadcast a query to all local devices over UDP 5355 (2). If an attacker is listening, they can respond and impersonate the 

requested host (3). If the host is an authenticated resource, the client response will contain user credentials. 

New Technology LAN Manager (NTLM) v1
New Technology LAN Manager (NTLM) is a proprietary Microsoft protocol introduced in 

1993 to replace Microsoft LAN Manager (LANMAN). NTLM is part of a cohort of Microsoft 

security protocols designed to collectively provide authentication, integrity, and 

confidentiality to users.

NTLM is what is known as a challenge-response protocol used by servers to authenticate 

clients using password hashes. In its original incarnation NTLMv1, used a fairly simple (and 

easily compromised) authentication method. The process by which NTLM authenticates 

users is described by Microsoft below:

NTLM credentials are based on data obtained during the interactive logon process and 
consist of a domain name, a user name, and a one-way hash of the user's password. 
NTLM uses an encrypted challenge/response protocol to authenticate a user without 
sending the user's password over the wire. Instead, the system requesting 
authentication must perform a calculation that proves it has access to the secured 
NTLM credentials.

While NTLMv1 was eventually replaced by NTLMv2, the next generation of the protocol 

didn’t fare much better when it came to actually protecting passwords from being 

intercepted by malicious actors. NTLMv2 added a few features, including a time stamp and a 

usernames appended to the hash. While this helps mitigate offline relay attacks, it introduced 

other vulnerabilities and did little to improve the overall security of the protocol.

The problem with this cryptography scheme is that it’s incredibly easy to crack. In 2012, it 

was demonstrated that every possible permutation of NTLM’s eight-byte hash could be 

cracked in under six hours. In 2019, an open-source password recovery tool known as 

HashCat demonstrated that it could crack any eight-byte hash in under two and a half hours, 

a fact the The Register noted—with its trademark snark—was less time than it took to watch 

Avengers: Endgame.

How Common is NTLMv1?

Despite the recommendation from Microsoft that organizations cease use of NTLM in favor

of the much more secure Kerberos authentication protocol, NTLM is still quite common in 

enterprise environments. While ExtraHop did not look at the ubiquity of NTLMv2, the less 

secure of the two versions, NTLMv1 is still in broad use.

According to network telemetry from Reveal(x), 34% of environments have at least 10 clients 

running NTLMv1, less than the number of organizations with the same number of devices 

running SMBv1 and LLMNR, but still a significant number for a protocol that has been 

deprecated for over a decade, with 23% of organizations having fifty or more clients using 

NTLMv1, while 19% have one hundred or more clients using the protocol for authentication.

The Risks of NTLM

Using NTLM for authentication exposes organizations to a number of risks. A skilled attacker

can easily intercept NTLM hashes that are equivalent to passwords or crack NTLMv1 

passwords offline. A successful exploit against NTLMv1 authentication can enable an 

attacker to launch machine-in-the-middle (MITM) attacks or take complete control of a 

domain.

Fig. 6 During an NTLM relay attack, the attacker acts as a machine-in-the-middle (MITM), receiving and then forwarding the 

NTLM messages [1]. The attacker then creates an authenticated session with the server [2]. With this technique, the attacker

only needs the NTLM hash to move laterally across the network or access sensitive information stored on servers.

In an MITM attack, malicious actors insert themselves between the client and the server, 

allowing them to intercept all data transmitted between those devices. If the 

communications are not encrypted, or the ciphers are weak, as in the case of NTLM, MITM 

attacks can result in compromised credentials, scrapped PII, stolen trade secrets, the 

injection of fake or manipulated data, and much more. In fact, recently patched flaws in 

current NTLM versions allow attackers to force a downgrade of the security features within 

the NTLM protocol. Attackers can then leverage stolen credentials to pivot between 

machines until they identify domain admin accounts that can be used for direct AD Server

access and a full domain takeover.

Plaintext Credentials over Hypertext 
Transfer Protocol (HTTP)
The Hypertext Transfer Protocol (HTTP) is almost certainly the most commonly known 

application protocol. Whether you know anything about networking or not, chances are 

you’ve seen it at the beginning of every web address you’ve ever visited. A distributed, 

collaborative, hypermedia information system, it allows users to communicate data on the 

World Wide Web. Alongside its sister protocol, HTML, it’s the foundation of the internet we 

know today.

In 1995, four years after the introduction of HTTP, it’s more secure version, HTTPS, arrived 

on the scene. This was in response to demand for companies to be able to process payment 

information over the internet—something that couldn’t be done over HTTP without blatantly

exposing payment card information. Unlike HTTP, HTTPS uses TLS to encrypt the 

communications between clients and servers, preventing people from intercepting and 

reading your data in flight. It also preserves the integrity of data, helping to prevent it from 

being broken or corrupted.

While HTTP has never been officially deprecated, in 2017, Google took a major step toward 

phasing out the use of insecure HTTP. In January of 2017, Google Chrome started marking all 

non-HTTPS websites as “insecure.” Since that time, any website that stores information such 

as login credentials, credit card information, or PII must use HTTPS in order to function 

effectively in Chrome. Google also gives search priority to HTTPS sites.

While HTTP is not inherently problematic, its use for transmission of sensitive data is 

definitely a major risk. When plaintext credentials are transmitted over HTTP, those 

credentials are left exposed, the internet equivalent of shouting passwords across a crowded 

room, making it trivial for anyone to intercept and steal those credentials.  

How Common is Plaintext over HTTP?

Detections data from ExtraHop Reveal(x) 360 shows that 81 of 100 enterprise environments 

still use insecure HTTP credentials:

In the Wild: Plaintext Credentials over HTTP

In March 2021, ExtraHop experts were working with a major metropolitan law enforcement 

agency when Reveal(x) encountered a “Credentials Sent over HTTP” detection. The detection 

showed that the device sending credentials was a law enforcement agency laptop. The 

hostname matched the naming scheme for agency laptops, the IP address was within agency

domain space, and the user associated with the laptop was a law enforcement officer with 

the agency.

The security team then pivoted to look at the target of the HTTP credentials, which 

happened to be an internet address. Looking at related records, the team identified the 

address as the domain for a common law enforcement research forum that’s also available to 

the general public. The domain was HTTP, not HTTPS.

Even more concerning was the fact that the officer was accessing a portion of the site for

verified members (typically law enforcement agents and other investigators) that requires a 

login. Because the domain was HTTP and not HTTPS, usernames and passwords were both 

sent in the clear, making it easy for malicious actors to find and steal those credentials 

directly from the web.

Further investigation found that the site in question had a proper SSL certificate and had SSL

enabled. The site was just not configured to make encryption mandatory, potentially

exposing the login credentials of thousands of law enforcement officers and other

investigators who are verified site users.

The Risks of Plaintext Credentials over HTTP

As illustrated in the example above, sending plaintext credentials over HTTP exposes users 

and the organizations for which they work to a number of risks. In addition to credentials, 

HTTP websites can easily expose sensitive customer data such as credit card information 

and PII. 

Of course, even HTTPS isn’t foolproof. Heartbleed, a serious vulnerability in OpenSSL that

first came to light in 2014, is a classic example of how HTTPS can be exploited. Under

normal conditions, SSL/TLS encryption protects information—such as logins and credit card 

numbers—being transmitted over the internet. The Heartbleed vulnerability inadvertently

exposed the memory of systems protected by OpenSSL, compromising the secret keys used 

to encrypt the traffic and giving attackers access to users names, passwords, and other

sensitive information.

Because HTTP or HTTPS are often used to transmit user input from websites and web 

applications, the protocols are sometimes abused to transmit malicious content from the 

public internet into a private environment. For example, an attacker using the SQL injection 

tactic sends SQL statements hidden in HTTP headers or other user-manipulatable fields in 

the HTTP protocol. The encryption used by HTTPS can actually make it more challenging to 

detect SQL injection attacks.

Even with vulnerabilities like Heartbleed, HTTPS is still far more secure than HTTP for

transmission of sensitive information.

A Note on TLS 1.0/1.1
Recently IETF announced the formal deprecation of the TLS protocol version 1.0 and 1.1. In 

the coming months, ExtraHop will carefully monitor the ongoing use of these protocol 

versions across enterprise environments to understand how and if it is being phased out.

How to Determine Whether You’re 
Running Insecure Protocols
There are many ways you can end up running insecure or deprecated protocols or protocol 

versions in your environment, but only a few ways to find them and get them out.

When it comes to the introduction of insecure protocols, the "tyranny of default" is often to 

blame. Devices and software that communicate across the network are configured with 

default settings that may go out of date over time. If a new device or solution is introduced 

into the environment, but left to its default configuration, it may run protocols that are no 

longer considered secure.

Similarly, cloud systems and workloads use configuration templates to determine their

protocol usage, and over time, as new protocols are developed and old versions deprecated, 

these configuration templates may go out of date and need to be updated. Any new

workloads created with an older template may introduce insecure protocols into the environ-

ment. Because of the often short-lived and ephemeral nature of cloud workloads, it can be 

very challenging to catch these instances of insecure protocol usage and know how to get

them out of your system. 

So, how do you do it?

Manual, Point-in-Time Audit

Maintaining an inventory of software and hardware in your environment is a fundamental 

necessity for security hygiene, and is recommended in the first and second security controls 

in the CIS Top 20. Despite being a vital security practice, maintaining this inventory is a 

challenge for many organizations. One way to gather such an inventory is through a manual 

audit using a combination of scanning tools, ranging from the free, open source tool Nmap to 

costlier commercial products.

While scanning the network for devices and protocols in use can provide a valuable snapshot 

of a point in time, it doesn't protect you against new occurrences of insecure protocols. 

Neither does a point-in-time scan offer any guarantee that you've discovered every instance 

of an insecure protocol actively in use. Particularly in a large and heavily segmented network, 

scanning tools may simply not uncover what you're looking for. As one security analyst once 

remarked, “The network is dark and full of terrors.”

So how do you find insecure protocols in an enterprise-scale network?

Continuous Network Monitoring

By passively monitoring and analyzing network traffic continuously, you can discover each 

protocol that is in use on the network at any given moment. This addresses two of the 

primary challenges:

1. Manual audits only give you a point-in-time snapshot. There are many well-docu-

mented ways for insecure protocols to be reintroduced to your environment between 

audits, which are usually conducted quarterly at best.

2. Manual audits are extremely time- and energy-consuming, taking away time from 

other more critical security functions like responding to actual threats.

With the increase in remote and distributed workforces and hybrid environments with both 

on-premises and cloud components, the number of ways that insecure protocols may be 

introduced into your environment have multiplied at the same time that maintaining an 

accurate inventory has grown massively more difficult. Continuous monitoring of network 

traffic for protocol identification and threat detection and response has gone from a 

nice-to-have to a must-have.

INTRODUCED

DEPRECATED

DAMAGES

1983

2013

$1B+

SMBv1
67% of 
environments 
use SMBv1 
in 2021

https://www.extrahop.com/resources/protocols/dns/
https://www.extrahop.com/resources/protocols/
https://www.extrahop.com/resources/protocols/cifs/


What’s in a Protocol?
Protocols are the lingua franca of the network, allowing connected devices to communicate 

with each other regardless of differences in operating systems, hardware, and processes. 

Protocols work by establishing a set of rules for how data is transmitted between different

network devices, and include everything from how that data is protected (encryption) to how

domains are resolved. While protocols for network communication can be updated and 

refined, and new ones can be created, many protocols in common use today have been 

around for decades.

Different protocols are used in different ways, both by IT teams and malicious actors. For

example, the Domain Name System (DNS) protocol makes navigating the internet easier for

users by mapping IP addresses to human readable domain names, but is frequently misused 

by attackers for malicious purposes such as command and control (C2) and data exfiltration.

You can learn more about protocols and threat activities associated with them by visiting the 

ExtraHop Network Protocol Library.

This report focuses specifically on four of those protocols: SMBv1, LLMNR, NTLM, and HTTP, 

the prevalence of these protocols within enterprise IT environments, and the risks associated 

with each.

Server Message Block (SMB) v1
Server Message Block (SMB) is a protocol that was developed in the 1980s and is used 

primarily for sharing things like files, printer services, and communication between networked 

devices. During the 1980s and 1990s, Microsoft attempted to rebrand SMBv1 under the 

name Common Internet File System (CIFS) and expanded its capabilities to include the 

transmission of large files and the establishment of direct connections over port 445.

As it turned out, SMBv1 (CIFS) was notoriously buggy, chatty, and difficult to use, and had 

major security deficiencies. When Microsoft introduced SMBv2 in 2006 they abandoned the 

CIFS nomenclature altogether. Six years later, in 2012, Microsoft introduced SMBv3, and in 

2013 the company officially deprecated SMBv1.

Despite the deprecation, Microsoft continued to install SMBv1 on its Windows Servers until 

2016. By that time, Microsoft was actively urging the Microsoft user community to stop using 

SMBv1, but with millions of machines using the protocol, many of the warnings, including 

those from within the Windows Server engineering group, went unheeded. This is why, when 

EternalBlue and related exploits—known collectively as Eternal(x)—came to light in 2017, 

SMBv1 was still pervasive in IT environments around the world. The Eternal(x) vulnerabilities 

exploit a buffer overflow vulnerability in SMBv1.

How Common is SMBv1?
Based on research conducted by ExtraHop in the first three months of 2021, 88% of 

environments have at least one device running SMBv1. While that might seem like a staggering 

number, the good news is that in the cases where it’s just one device, this is probably 

intentional. Red teams still use SMBv1 as a tool in penetration testing exercises, which 

probably accounts for those environments with just one instance.

The problem is that 67% of environments have at least 10 devices running SMBv1 and that’s 

likely not intentional. While 10 devices might seem like a relatively small number, the remote 

code execution enabled by Eternal(x) exploits makes any device running SMBv1 an easy pivot 

point from which to launch a large-scale attack. These 10 devices might be a tiny fraction of 

the assets in an environment, but defense is a zero-fail mission. SMBv1 doesn’t need to be 

installed on every device in the environment to be used to launch a catastrophic attack. It only 

needs to be on one.

The numbers only get scarier from there. According to ExtraHop data, 37% of environments 

have at least 50 devices running SMBv1, and 31% of environments have 100 or more 

devices still using the protocol four years after WannaCry and NotPetya rocked the world.

In the Wild: SMBv1
A High Stakes Gamble

In early 2019, almost two years after the EternalBlue vulnerability came to light, ExtraHop 

was working with a branch of a US Federal Agency. The agency was aware that it still had 

machines running SMBv1. What they didn’t know was which machines, or how many.

Their challenge was two-fold. First, the reason they were still running SMBv1 is because so 

many of their legacy systems used the protocol. Getting rid of it was a massive logistical 

undertaking, as many of their systems still ran on Windows XP, which couldn’t use later

versions of the protocol. However, they’d recently been advised by their NAS vendor that 

the vendor was going to stop supporting the SMBv1 protocol.

Second, while they had continued using SMBv1 long after its vulnerabilities (and the damage 

that could be wrought through their exploitation) had come to light, they were well aware of

the risks associated with the protocol. 

The security team at the agency used their SMB/CIFS Dashboard in Reveal(x) to pull up all 

devices running SMBv1. They quickly found that they still had a large number of devices 

using the protocol, including their entire VDI deployment. This protocol exposed the branch 

of the agency to huge risk of a fast-moving ransomware attack, among other things.

While the transition away from SMBv1 took effort, the move ultimately meant a more secure 

environment for the agency. Unfortunately, the ongoing use of legacy systems that don’t 

support later versions of the SMB protocol are a major reason that many organizations 

remain exposed to Eternal(x) exploitation.

A Brush with Ransomware Four Years After WannaCry

In March 2021, news broke that Taiwanese computing giant Acer had been severely

compromised by ransomware. The $50 million ransom demand was the largest in history, 

and REvil, the cybercriminals responsible for the attack, had architected a trump card. Not

only had their attack encrypted a large percentage of the company’s files, they had also 

exfiltrated huge quantities of data. In the event Acer had a back-up, they could still extract 

the ransom by threatening to leak the stolen data.

The exfiltrate-then-encrypt play is becoming increasingly common in ransomware attacks as 

cybercriminals try to maximize their leverage. Just a few months before the disclosure of the 

Acer attack, an ExtraHop customer experienced a very similar attack.

In late 2020, a large ExtraHop customer based in North America was alerted to a 

Ransomware Activity detection in Reveal(x) 360. The same devices were also seeing alerts 

for detections on SMB data staging and suspicious file reads. By looking at Related 

Detections, the customer’s security team determined that the attackers were also in the 

process of exfiltrating data before they encrypted it in an effort to inflict maximum damage.

The team was able to quickly identify and quarantine affected assets and accounts, and as a 

result, the attackers were only able to encrypt a small percentage of targeted files.

While the customer averted disaster in this case, it serves as a cautionary tale, not only

about the new ransomware playbook, but about the ongoing risks associated with SMBv1. 

Devices running this protocol remain an easy target for attackers, especially ransomware 

gangs more interested in money than in information.

You can read more about this ransomware trend here. 

The Risks of SMBv1

The reason that SMBv1 has been so successfully exploited for attacks like WannaCry and 

NotPetya is that, if an attacker can successfully access a server with SMBv1 enabled, they

can quickly spread malware to other unpatched servers across a network. In an 

SMBv1-based attack, the attacker sends multiple requests, or messages, to a file server over

SMBv1. Each SMBv1 message is specially designed to manipulate the file server memory in a 

way that eventually causes a buffer overflow, which enables the attacker to deliver a 

malicious payload, such as ransomware, to the kernel of the server.

Buffer Overflow attacks of system level services are particularly dangerous because they

provide attackers with a wide latitude for follow-on activities such as injecting malicious 

payloads, scraping user credentials from memory, and setting up hidden persistence 

mechanisms that reside only in memory.

INSECURE PROTOCOL USAGE EXPOSES ORGANIZATIONS TO CYBERSECURITY RISK  |   SECURITY ADVISORY    5

Link-Local Multicast Name Resolution (LLMNR)
Link-Local Multicast Name Resolution (LLMNR) is a protocol that allows name resolution 

without a DNS server. Essentially, LLMNR is a layer 2 protocol that provides a hostname-to-IP

resolution on the basis of a network packet that’s transmitted via Port UDP 5355 to the 

multicast network address (224.0.0.0 through 239.255.255.255). The multicast packet queries 

all network interfaces looking for any that can self-identify authoritatively as the hostname in 

the query.

LLMNR is distinct from other protocols described in this report, in that it was never adopted as 

an IETF standard protocol (although it was defined in RFC 4795).

LLMNR was originally created as a workaround to enable name resolution in environments in 

which DNS servers would be impractical, such as small private networks. LLMNR was created 

as a way to achieve name resolution without the onerous requirements of DNS. The protocol 

has been (and still is) used by operating systems, including Microsoft Windows, to identify

networked devices like file servers.

How Common is LLMNR?
For a protocol that’s not quite a protocol—and a very risky one at that—it’s usage is still 

surprisingly common. De-identified network telemetry from ExtraHop Reveal(x) shows that 

70% of enterprise environments have at least 10 clients still running LLMNR. Unfortunately, as 

the device counts go up, the number of environments with vulnerable clients doesn’t decline 

by much. Fifty-five percent of environments have fifty or more LLMNR clients, while 46% have 

more than 100 such clients.

The Risks of LLMNR
While LLMNR provides a DNS-free mechanism for host-name resolution within a local 

environment, it also provides an avenue of attack for malicious actors. An attacker can use the 

protocol to trick a victim into revealing user credentials. This is done by leveraging LLMNR to 

gain access to the user credential hashes, which can then be cracked to reveal actual 

credentials, especially if older MS password techniques like LANMAN are not disabled.

How does this work if you’re the attacker? The first step is to configure a node on the network 

to answer that it is the hostname associated with any query. For the requesting client, this 

creates a race condition in which the client will not only accept, but trust whichever device 

answers first. This is because the protocol specifications of LLMNR state that all client

responses are trustworthy.

Fig. 1 Server Message Block 1.0 (SMBv1) is a version of the file sharing and transaction protocol that contains a memory calculation 

vulnerability, which is the target of the EternalBlue exploit. First, the attacker sends multiple requests, or messages, to a file server over 

SMBv1 (1). Each SMBv1 message is specially designed to manipulate the file server memory in a way that eventually causes a buffer 

overflow (2), which enables the attacker to deliver a malicious payload (3), such as ransomware, to the kernel of the server. Several 

well-known security attacks, such as the WannaCry ransomware, are associated with the EternalBlue exploit.

This is when credential hashes come into play. When the client receives a definitive “It’s me!”

from a compromised device, it automatically sends a hashed copy of the current user's 

credentials as part of the response. This provides the attacker with a hashed copy of the 

credentials which can be decrypted, or leveraged via pass-the-hash attacks to begin 

escalating privileges within the broader network.

While DNS is not without its challenges, it’s a far more secure way to accurately identify host

names. With that said, DNS should be carefully monitored to ensure that it is not itself being

utilized for nefarious purposes. 

Fig. 4 When a DNS request for a hostname cannot be resolved or a DNS server is unavailable (1), clients with LLMNR enabled 

will broadcast a query to all local devices over UDP 5355 (2). If an attacker is listening, they can respond and impersonate the 

requested host (3). If the host is an authenticated resource, the client response will contain user credentials. 

New Technology LAN Manager (NTLM) v1
New Technology LAN Manager (NTLM) is a proprietary Microsoft protocol introduced in 

1993 to replace Microsoft LAN Manager (LANMAN). NTLM is part of a cohort of Microsoft 

security protocols designed to collectively provide authentication, integrity, and 

confidentiality to users.

NTLM is what is known as a challenge-response protocol used by servers to authenticate 

clients using password hashes. In its original incarnation NTLMv1, used a fairly simple (and 

easily compromised) authentication method. The process by which NTLM authenticates 

users is described by Microsoft below:

NTLM credentials are based on data obtained during the interactive logon process and 
consist of a domain name, a user name, and a one-way hash of the user's password. 
NTLM uses an encrypted challenge/response protocol to authenticate a user without 
sending the user's password over the wire. Instead, the system requesting 
authentication must perform a calculation that proves it has access to the secured 
NTLM credentials.

While NTLMv1 was eventually replaced by NTLMv2, the next generation of the protocol 

didn’t fare much better when it came to actually protecting passwords from being 

intercepted by malicious actors. NTLMv2 added a few features, including a time stamp and a 

usernames appended to the hash. While this helps mitigate offline relay attacks, it introduced 

other vulnerabilities and did little to improve the overall security of the protocol.

The problem with this cryptography scheme is that it’s incredibly easy to crack. In 2012, it 

was demonstrated that every possible permutation of NTLM’s eight-byte hash could be 

cracked in under six hours. In 2019, an open-source password recovery tool known as 

HashCat demonstrated that it could crack any eight-byte hash in under two and a half hours, 

a fact the The Register noted—with its trademark snark—was less time than it took to watch 

Avengers: Endgame.

How Common is NTLMv1?

Despite the recommendation from Microsoft that organizations cease use of NTLM in favor

of the much more secure Kerberos authentication protocol, NTLM is still quite common in 

enterprise environments. While ExtraHop did not look at the ubiquity of NTLMv2, the less 

secure of the two versions, NTLMv1 is still in broad use.

According to network telemetry from Reveal(x), 34% of environments have at least 10 clients 

running NTLMv1, less than the number of organizations with the same number of devices 

running SMBv1 and LLMNR, but still a significant number for a protocol that has been 

deprecated for over a decade, with 23% of organizations having fifty or more clients using 

NTLMv1, while 19% have one hundred or more clients using the protocol for authentication.

The Risks of NTLM

Using NTLM for authentication exposes organizations to a number of risks. A skilled attacker

can easily intercept NTLM hashes that are equivalent to passwords or crack NTLMv1 

passwords offline. A successful exploit against NTLMv1 authentication can enable an 

attacker to launch machine-in-the-middle (MITM) attacks or take complete control of a 

domain.

Fig. 6 During an NTLM relay attack, the attacker acts as a machine-in-the-middle (MITM), receiving and then forwarding the 

NTLM messages [1]. The attacker then creates an authenticated session with the server [2]. With this technique, the attacker

only needs the NTLM hash to move laterally across the network or access sensitive information stored on servers.

In an MITM attack, malicious actors insert themselves between the client and the server, 

allowing them to intercept all data transmitted between those devices. If the 

communications are not encrypted, or the ciphers are weak, as in the case of NTLM, MITM 

attacks can result in compromised credentials, scrapped PII, stolen trade secrets, the 

injection of fake or manipulated data, and much more. In fact, recently patched flaws in 

current NTLM versions allow attackers to force a downgrade of the security features within 

the NTLM protocol. Attackers can then leverage stolen credentials to pivot between 

machines until they identify domain admin accounts that can be used for direct AD Server

access and a full domain takeover.

Plaintext Credentials over Hypertext 
Transfer Protocol (HTTP)
The Hypertext Transfer Protocol (HTTP) is almost certainly the most commonly known 

application protocol. Whether you know anything about networking or not, chances are 

you’ve seen it at the beginning of every web address you’ve ever visited. A distributed, 

collaborative, hypermedia information system, it allows users to communicate data on the 

World Wide Web. Alongside its sister protocol, HTML, it’s the foundation of the internet we 

know today.

In 1995, four years after the introduction of HTTP, it’s more secure version, HTTPS, arrived 

on the scene. This was in response to demand for companies to be able to process payment 

information over the internet—something that couldn’t be done over HTTP without blatantly

exposing payment card information. Unlike HTTP, HTTPS uses TLS to encrypt the 

communications between clients and servers, preventing people from intercepting and 

reading your data in flight. It also preserves the integrity of data, helping to prevent it from 

being broken or corrupted.

While HTTP has never been officially deprecated, in 2017, Google took a major step toward 

phasing out the use of insecure HTTP. In January of 2017, Google Chrome started marking all 

non-HTTPS websites as “insecure.” Since that time, any website that stores information such 

as login credentials, credit card information, or PII must use HTTPS in order to function 

effectively in Chrome. Google also gives search priority to HTTPS sites.

While HTTP is not inherently problematic, its use for transmission of sensitive data is 

definitely a major risk. When plaintext credentials are transmitted over HTTP, those 

credentials are left exposed, the internet equivalent of shouting passwords across a crowded 

room, making it trivial for anyone to intercept and steal those credentials.  

How Common is Plaintext over HTTP?

Detections data from ExtraHop Reveal(x) 360 shows that 81 of 100 enterprise environments 

still use insecure HTTP credentials:

In the Wild: Plaintext Credentials over HTTP

In March 2021, ExtraHop experts were working with a major metropolitan law enforcement 

agency when Reveal(x) encountered a “Credentials Sent over HTTP” detection. The detection 

showed that the device sending credentials was a law enforcement agency laptop. The 

hostname matched the naming scheme for agency laptops, the IP address was within agency

domain space, and the user associated with the laptop was a law enforcement officer with 

the agency.

The security team then pivoted to look at the target of the HTTP credentials, which 

happened to be an internet address. Looking at related records, the team identified the 

address as the domain for a common law enforcement research forum that’s also available to 

the general public. The domain was HTTP, not HTTPS.

Even more concerning was the fact that the officer was accessing a portion of the site for

verified members (typically law enforcement agents and other investigators) that requires a 

login. Because the domain was HTTP and not HTTPS, usernames and passwords were both 

sent in the clear, making it easy for malicious actors to find and steal those credentials 

directly from the web.

Further investigation found that the site in question had a proper SSL certificate and had SSL

enabled. The site was just not configured to make encryption mandatory, potentially

exposing the login credentials of thousands of law enforcement officers and other

investigators who are verified site users.

The Risks of Plaintext Credentials over HTTP

As illustrated in the example above, sending plaintext credentials over HTTP exposes users 

and the organizations for which they work to a number of risks. In addition to credentials, 

HTTP websites can easily expose sensitive customer data such as credit card information 

and PII. 

Of course, even HTTPS isn’t foolproof. Heartbleed, a serious vulnerability in OpenSSL that

first came to light in 2014, is a classic example of how HTTPS can be exploited. Under

normal conditions, SSL/TLS encryption protects information—such as logins and credit card 

numbers—being transmitted over the internet. The Heartbleed vulnerability inadvertently

exposed the memory of systems protected by OpenSSL, compromising the secret keys used 

to encrypt the traffic and giving attackers access to users names, passwords, and other

sensitive information.

Because HTTP or HTTPS are often used to transmit user input from websites and web 

applications, the protocols are sometimes abused to transmit malicious content from the 

public internet into a private environment. For example, an attacker using the SQL injection 

tactic sends SQL statements hidden in HTTP headers or other user-manipulatable fields in 

the HTTP protocol. The encryption used by HTTPS can actually make it more challenging to 

detect SQL injection attacks.

Even with vulnerabilities like Heartbleed, HTTPS is still far more secure than HTTP for

transmission of sensitive information.

A Note on TLS 1.0/1.1
Recently IETF announced the formal deprecation of the TLS protocol version 1.0 and 1.1. In 

the coming months, ExtraHop will carefully monitor the ongoing use of these protocol 

versions across enterprise environments to understand how and if it is being phased out.

How to Determine Whether You’re 
Running Insecure Protocols
There are many ways you can end up running insecure or deprecated protocols or protocol 

versions in your environment, but only a few ways to find them and get them out.

When it comes to the introduction of insecure protocols, the "tyranny of default" is often to 

blame. Devices and software that communicate across the network are configured with 

default settings that may go out of date over time. If a new device or solution is introduced 

into the environment, but left to its default configuration, it may run protocols that are no 

longer considered secure.

Similarly, cloud systems and workloads use configuration templates to determine their

protocol usage, and over time, as new protocols are developed and old versions deprecated, 

these configuration templates may go out of date and need to be updated. Any new

workloads created with an older template may introduce insecure protocols into the environ-

ment. Because of the often short-lived and ephemeral nature of cloud workloads, it can be 

very challenging to catch these instances of insecure protocol usage and know how to get

them out of your system. 

So, how do you do it?

Manual, Point-in-Time Audit

Maintaining an inventory of software and hardware in your environment is a fundamental 

necessity for security hygiene, and is recommended in the first and second security controls 

in the CIS Top 20. Despite being a vital security practice, maintaining this inventory is a 

challenge for many organizations. One way to gather such an inventory is through a manual 

audit using a combination of scanning tools, ranging from the free, open source tool Nmap to 

costlier commercial products.

While scanning the network for devices and protocols in use can provide a valuable snapshot 

of a point in time, it doesn't protect you against new occurrences of insecure protocols. 

Neither does a point-in-time scan offer any guarantee that you've discovered every instance 

of an insecure protocol actively in use. Particularly in a large and heavily segmented network, 

scanning tools may simply not uncover what you're looking for. As one security analyst once 

remarked, “The network is dark and full of terrors.”

So how do you find insecure protocols in an enterprise-scale network?

Continuous Network Monitoring

By passively monitoring and analyzing network traffic continuously, you can discover each 

protocol that is in use on the network at any given moment. This addresses two of the 

primary challenges:

1. Manual audits only give you a point-in-time snapshot. There are many well-docu-

mented ways for insecure protocols to be reintroduced to your environment between 

audits, which are usually conducted quarterly at best.

2. Manual audits are extremely time- and energy-consuming, taking away time from 

other more critical security functions like responding to actual threats.

With the increase in remote and distributed workforces and hybrid environments with both 

on-premises and cloud components, the number of ways that insecure protocols may be 

introduced into your environment have multiplied at the same time that maintaining an 

accurate inventory has grown massively more difficult. Continuous monitoring of network 

traffic for protocol identification and threat detection and response has gone from a 

nice-to-have to a must-have.

Message Message1

2

3

Anatomy of Eternal Blue

Exploit of Buffer
Overflow in Kernel

SMBv1/CIFS
Traffic

SMBv1 was designed 
for a world that no 
longer exists. A world 
without malicious 
actors, without vast 
sets of important data, 
without near-universal 
computer usage. 
Frankly, its naivete is 
staggering when 
viewed through 
modern eyes.
- Ned Pyle, 15 year Microsoft veteran 
and a Principal Program Manager in the 
Windows Server engineering group



What’s in a Protocol?
Protocols are the lingua franca of the network, allowing connected devices to communicate 

with each other regardless of differences in operating systems, hardware, and processes. 

Protocols work by establishing a set of rules for how data is transmitted between different

network devices, and include everything from how that data is protected (encryption) to how

domains are resolved. While protocols for network communication can be updated and 

refined, and new ones can be created, many protocols in common use today have been 

around for decades.

Different protocols are used in different ways, both by IT teams and malicious actors. For

example, the Domain Name System (DNS) protocol makes navigating the internet easier for

users by mapping IP addresses to human readable domain names, but is frequently misused 

by attackers for malicious purposes such as command and control (C2) and data exfiltration.

You can learn more about protocols and threat activities associated with them by visiting the 

ExtraHop Network Protocol Library.

This report focuses specifically on four of those protocols: SMBv1, LLMNR, NTLM, and HTTP, 

the prevalence of these protocols within enterprise IT environments, and the risks associated 

with each.

Server Message Block (SMB) v1
Server Message Block (SMB) is a protocol that was developed in the 1980s and is used 

primarily for sharing things like files, printer services, and communication between networked 

devices. During the 1980s and 1990s, Microsoft attempted to rebrand SMBv1 under the 

name Common Internet File System (CIFS) and expanded its capabilities to include the 

transmission of large files and the establishment of direct connections over port 445.

As it turned out, SMBv1 (CIFS) was notoriously buggy, chatty, and difficult to use, and had 

major security deficiencies. When Microsoft introduced SMBv2 in 2006 they abandoned the 

CIFS nomenclature altogether. Six years later, in 2012, Microsoft introduced SMBv3, and in 

2013 the company officially deprecated SMBv1.

Despite the deprecation, Microsoft continued to install SMBv1 on its Windows Servers until 

2016. By that time, Microsoft was actively urging the Microsoft user community to stop using 

SMBv1, but with millions of machines using the protocol, many of the warnings, including 

those from within the Windows Server engineering group, went unheeded. This is why, when 

EternalBlue and related exploits—known collectively as Eternal(x)—came to light in 2017, 

SMBv1 was still pervasive in IT environments around the world. The Eternal(x) vulnerabilities 

exploit a buffer overflow vulnerability in SMBv1.

How Common is SMBv1?
Based on research conducted by ExtraHop in the first three months of 2021, 88% of

environments have at least one device running SMBv1. While that might seem like a staggering 

number, the good news is that in the cases where it’s just one device, this is probably

intentional. Red teams still use SMBv1 as a tool in penetration testing exercises, which 

probably accounts for those environments with just one instance.

The problem is that 67% of environments have at least 10 devices running SMBv1 and that’s 

likely not intentional. While 10 devices might seem like a relatively small number, the remote 

code execution enabled by Eternal(x) exploits makes any device running SMBv1 an easy pivot 

point from which to launch a large-scale attack. These 10 devices might be a tiny fraction of

the assets in an environment, but defense is a zero-fail mission. SMBv1 doesn’t need to be 

installed on every device in the environment to be used to launch a catastrophic attack. It only

needs to be on one.

The numbers only get scarier from there. According to ExtraHop data, 37% of environments 

have at least 50 devices running SMBv1, and 31% of environments have 100 or more 

devices still using the protocol four years after WannaCry and NotPetya rocked the world.

In the Wild: SMBv1
A High Stakes Gamble

In early 2019, almost two years after the EternalBlue vulnerability came to light, ExtraHop 

was working with a branch of a US Federal Agency. The agency was aware that it still had 

machines running SMBv1. What they didn’t know was which machines, or how many.

Their challenge was two-fold. First, the reason they were still running SMBv1 is because so 

many of their legacy systems used the protocol. Getting rid of it was a massive logistical 

undertaking, as many of their systems still ran on Windows XP, which couldn’t use later 

versions of the protocol. However, they’d recently been advised by their NAS vendor that 

the vendor was going to stop supporting the SMBv1 protocol.

Second, while they had continued using SMBv1 long after its vulnerabilities (and the damage 

that could be wrought through their exploitation) had come to light, they were well aware of 

the risks associated with the protocol. 

The security team at the agency used their SMB/CIFS Dashboard in Reveal(x) to pull up all 

devices running SMBv1. They quickly found that they still had a large number of devices 

using the protocol, including their entire VDI deployment. This protocol exposed the branch 

of the agency to huge risk of a fast-moving ransomware attack, among other things.

While the transition away from SMBv1 took effort, the move ultimately meant a more secure 

environment for the agency. Unfortunately, the ongoing use of legacy systems that don’t 

support later versions of the SMB protocol are a major reason that many organizations 

remain exposed to Eternal(x) exploitation.

A Brush with Ransomware Four Years After WannaCry

In March 2021, news broke that Taiwanese computing giant Acer had been severely 

compromised by ransomware. The $50 million ransom demand was the largest in history, 

and REvil, the cybercriminals responsible for the attack, had architected a trump card. Not 

only had their attack encrypted a large percentage of the company’s files, they had also 

exfiltrated huge quantities of data. In the event Acer had a back-up, they could still extract 

the ransom by threatening to leak the stolen data.

The exfiltrate-then-encrypt play is becoming increasingly common in ransomware attacks as 

cybercriminals try to maximize their leverage. Just a few months before the disclosure of the 

Acer attack, an ExtraHop customer experienced a very similar attack.

In late 2020, a large ExtraHop customer based in North America was alerted to a 

Ransomware Activity detection in Reveal(x) 360. The same devices were also seeing alerts 

for detections on SMB data staging and suspicious file reads. By looking at Related 

Detections, the customer’s security team determined that the attackers were also in the 

process of exfiltrating data before they encrypted it in an effort to inflict maximum damage.

The team was able to quickly identify and quarantine affected assets and accounts, and as a 

result, the attackers were only able to encrypt a small percentage of targeted files.

While the customer averted disaster in this case, it serves as a cautionary tale, not only

about the new ransomware playbook, but about the ongoing risks associated with SMBv1. 

Devices running this protocol remain an easy target for attackers, especially ransomware 

gangs more interested in money than in information.

You can read more about this ransomware trend here. 

The Risks of SMBv1

The reason that SMBv1 has been so successfully exploited for attacks like WannaCry and 

NotPetya is that, if an attacker can successfully access a server with SMBv1 enabled, they

can quickly spread malware to other unpatched servers across a network. In an 

SMBv1-based attack, the attacker sends multiple requests, or messages, to a file server over

SMBv1. Each SMBv1 message is specially designed to manipulate the file server memory in a 

way that eventually causes a buffer overflow, which enables the attacker to deliver a 

malicious payload, such as ransomware, to the kernel of the server.

Buffer Overflow attacks of system level services are particularly dangerous because they

provide attackers with a wide latitude for follow-on activities such as injecting malicious 

payloads, scraping user credentials from memory, and setting up hidden persistence 

mechanisms that reside only in memory.

INSECURE PROTOCOL USAGE EXPOSES ORGANIZATIONS TO CYBERSECURITY RISK  |   SECURITY ADVISORY     6

Link-Local Multicast Name Resolution (LLMNR)
Link-Local Multicast Name Resolution (LLMNR) is a protocol that allows name resolution 

without a DNS server. Essentially, LLMNR is a layer 2 protocol that provides a hostname-to-IP

resolution on the basis of a network packet that’s transmitted via Port UDP 5355 to the 

multicast network address (224.0.0.0 through 239.255.255.255). The multicast packet queries 

all network interfaces looking for any that can self-identify authoritatively as the hostname in 

the query.

LLMNR is distinct from other protocols described in this report, in that it was never adopted as 

an IETF standard protocol (although it was defined in RFC 4795).

LLMNR was originally created as a workaround to enable name resolution in environments in 

which DNS servers would be impractical, such as small private networks. LLMNR was created 

as a way to achieve name resolution without the onerous requirements of DNS. The protocol 

has been (and still is) used by operating systems, including Microsoft Windows, to identify

networked devices like file servers.

How Common is LLMNR?
For a protocol that’s not quite a protocol—and a very risky one at that—it’s usage is still 

surprisingly common. De-identified network telemetry from ExtraHop Reveal(x) shows that 

70% of enterprise environments have at least 10 clients still running LLMNR. Unfortunately, as 

the device counts go up, the number of environments with vulnerable clients doesn’t decline 

by much. Fifty-five percent of environments have fifty or more LLMNR clients, while 46% have 

more than 100 such clients.

The Risks of LLMNR
While LLMNR provides a DNS-free mechanism for host-name resolution within a local 

environment, it also provides an avenue of attack for malicious actors. An attacker can use the 

protocol to trick a victim into revealing user credentials. This is done by leveraging LLMNR to 

gain access to the user credential hashes, which can then be cracked to reveal actual 

credentials, especially if older MS password techniques like LANMAN are not disabled.

How does this work if you’re the attacker? The first step is to configure a node on the network 

to answer that it is the hostname associated with any query. For the requesting client, this 

creates a race condition in which the client will not only accept, but trust whichever device 

answers first. This is because the protocol specifications of LLMNR state that all client

responses are trustworthy.

This is when credential hashes come into play. When the client receives a definitive “It’s me!”

from a compromised device, it automatically sends a hashed copy of the current user's 

credentials as part of the response. This provides the attacker with a hashed copy of the 

credentials which can be decrypted, or leveraged via pass-the-hash attacks to begin 

escalating privileges within the broader network.

While DNS is not without its challenges, it’s a far more secure way to accurately identify host

names. With that said, DNS should be carefully monitored to ensure that it is not itself being

utilized for nefarious purposes. 

Fig. 4 When a DNS request for a hostname cannot be resolved or a DNS server is unavailable (1), clients with LLMNR enabled 

will broadcast a query to all local devices over UDP 5355 (2). If an attacker is listening, they can respond and impersonate the 

requested host (3). If the host is an authenticated resource, the client response will contain user credentials. 

New Technology LAN Manager (NTLM) v1
New Technology LAN Manager (NTLM) is a proprietary Microsoft protocol introduced in 

1993 to replace Microsoft LAN Manager (LANMAN). NTLM is part of a cohort of Microsoft 

security protocols designed to collectively provide authentication, integrity, and 

confidentiality to users.

NTLM is what is known as a challenge-response protocol used by servers to authenticate 

clients using password hashes. In its original incarnation NTLMv1, used a fairly simple (and 

easily compromised) authentication method. The process by which NTLM authenticates 

users is described by Microsoft below:

NTLM credentials are based on data obtained during the interactive logon process and 
consist of a domain name, a user name, and a one-way hash of the user's password. 
NTLM uses an encrypted challenge/response protocol to authenticate a user without 
sending the user's password over the wire. Instead, the system requesting 
authentication must perform a calculation that proves it has access to the secured 
NTLM credentials.

While NTLMv1 was eventually replaced by NTLMv2, the next generation of the protocol 

didn’t fare much better when it came to actually protecting passwords from being 

intercepted by malicious actors. NTLMv2 added a few features, including a time stamp and a 

usernames appended to the hash. While this helps mitigate offline relay attacks, it introduced 

other vulnerabilities and did little to improve the overall security of the protocol.

The problem with this cryptography scheme is that it’s incredibly easy to crack. In 2012, it 

was demonstrated that every possible permutation of NTLM’s eight-byte hash could be 

cracked in under six hours. In 2019, an open-source password recovery tool known as 

HashCat demonstrated that it could crack any eight-byte hash in under two and a half hours, 

a fact the The Register noted—with its trademark snark—was less time than it took to watch 

Avengers: Endgame.

How Common is NTLMv1?

Despite the recommendation from Microsoft that organizations cease use of NTLM in favor

of the much more secure Kerberos authentication protocol, NTLM is still quite common in 

enterprise environments. While ExtraHop did not look at the ubiquity of NTLMv2, the less 

secure of the two versions, NTLMv1 is still in broad use.

According to network telemetry from Reveal(x), 34% of environments have at least 10 clients 

running NTLMv1, less than the number of organizations with the same number of devices 

running SMBv1 and LLMNR, but still a significant number for a protocol that has been 

deprecated for over a decade, with 23% of organizations having fifty or more clients using 

NTLMv1, while 19% have one hundred or more clients using the protocol for authentication.

The Risks of NTLM

Using NTLM for authentication exposes organizations to a number of risks. A skilled attacker

can easily intercept NTLM hashes that are equivalent to passwords or crack NTLMv1 

passwords offline. A successful exploit against NTLMv1 authentication can enable an 

attacker to launch machine-in-the-middle (MITM) attacks or take complete control of a 

domain.

Fig. 6 During an NTLM relay attack, the attacker acts as a machine-in-the-middle (MITM), receiving and then forwarding the 

NTLM messages [1]. The attacker then creates an authenticated session with the server [2]. With this technique, the attacker

only needs the NTLM hash to move laterally across the network or access sensitive information stored on servers.

In an MITM attack, malicious actors insert themselves between the client and the server, 

allowing them to intercept all data transmitted between those devices. If the 

communications are not encrypted, or the ciphers are weak, as in the case of NTLM, MITM 

attacks can result in compromised credentials, scrapped PII, stolen trade secrets, the 

injection of fake or manipulated data, and much more. In fact, recently patched flaws in 

current NTLM versions allow attackers to force a downgrade of the security features within 

the NTLM protocol. Attackers can then leverage stolen credentials to pivot between 

machines until they identify domain admin accounts that can be used for direct AD Server

access and a full domain takeover.

Plaintext Credentials over Hypertext 
Transfer Protocol (HTTP)
The Hypertext Transfer Protocol (HTTP) is almost certainly the most commonly known 

application protocol. Whether you know anything about networking or not, chances are 

you’ve seen it at the beginning of every web address you’ve ever visited. A distributed, 

collaborative, hypermedia information system, it allows users to communicate data on the 

World Wide Web. Alongside its sister protocol, HTML, it’s the foundation of the internet we 

know today.

In 1995, four years after the introduction of HTTP, it’s more secure version, HTTPS, arrived 

on the scene. This was in response to demand for companies to be able to process payment 

information over the internet—something that couldn’t be done over HTTP without blatantly

exposing payment card information. Unlike HTTP, HTTPS uses TLS to encrypt the 

communications between clients and servers, preventing people from intercepting and 

reading your data in flight. It also preserves the integrity of data, helping to prevent it from 

being broken or corrupted.

While HTTP has never been officially deprecated, in 2017, Google took a major step toward 

phasing out the use of insecure HTTP. In January of 2017, Google Chrome started marking all 

non-HTTPS websites as “insecure.” Since that time, any website that stores information such 

as login credentials, credit card information, or PII must use HTTPS in order to function 

effectively in Chrome. Google also gives search priority to HTTPS sites.

While HTTP is not inherently problematic, its use for transmission of sensitive data is 

definitely a major risk. When plaintext credentials are transmitted over HTTP, those 

credentials are left exposed, the internet equivalent of shouting passwords across a crowded 

room, making it trivial for anyone to intercept and steal those credentials.  

How Common is Plaintext over HTTP?

Detections data from ExtraHop Reveal(x) 360 shows that 81 of 100 enterprise environments 

still use insecure HTTP credentials:

In the Wild: Plaintext Credentials over HTTP

In March 2021, ExtraHop experts were working with a major metropolitan law enforcement 

agency when Reveal(x) encountered a “Credentials Sent over HTTP” detection. The detection 

showed that the device sending credentials was a law enforcement agency laptop. The 

hostname matched the naming scheme for agency laptops, the IP address was within agency

domain space, and the user associated with the laptop was a law enforcement officer with 

the agency.

The security team then pivoted to look at the target of the HTTP credentials, which 

happened to be an internet address. Looking at related records, the team identified the 

address as the domain for a common law enforcement research forum that’s also available to 

the general public. The domain was HTTP, not HTTPS.

Even more concerning was the fact that the officer was accessing a portion of the site for

verified members (typically law enforcement agents and other investigators) that requires a 

login. Because the domain was HTTP and not HTTPS, usernames and passwords were both 

sent in the clear, making it easy for malicious actors to find and steal those credentials 

directly from the web.

Further investigation found that the site in question had a proper SSL certificate and had SSL

enabled. The site was just not configured to make encryption mandatory, potentially

exposing the login credentials of thousands of law enforcement officers and other

investigators who are verified site users.

The Risks of Plaintext Credentials over HTTP

As illustrated in the example above, sending plaintext credentials over HTTP exposes users 

and the organizations for which they work to a number of risks. In addition to credentials, 

HTTP websites can easily expose sensitive customer data such as credit card information 

and PII. 

Of course, even HTTPS isn’t foolproof. Heartbleed, a serious vulnerability in OpenSSL that

first came to light in 2014, is a classic example of how HTTPS can be exploited. Under

normal conditions, SSL/TLS encryption protects information—such as logins and credit card 

numbers—being transmitted over the internet. The Heartbleed vulnerability inadvertently

exposed the memory of systems protected by OpenSSL, compromising the secret keys used 

to encrypt the traffic and giving attackers access to users names, passwords, and other

sensitive information.

Because HTTP or HTTPS are often used to transmit user input from websites and web 

applications, the protocols are sometimes abused to transmit malicious content from the 

public internet into a private environment. For example, an attacker using the SQL injection 

tactic sends SQL statements hidden in HTTP headers or other user-manipulatable fields in 

the HTTP protocol. The encryption used by HTTPS can actually make it more challenging to 

detect SQL injection attacks.

Even with vulnerabilities like Heartbleed, HTTPS is still far more secure than HTTP for

transmission of sensitive information.

A Note on TLS 1.0/1.1
Recently IETF announced the formal deprecation of the TLS protocol version 1.0 and 1.1. In 

the coming months, ExtraHop will carefully monitor the ongoing use of these protocol 

versions across enterprise environments to understand how and if it is being phased out.

How to Determine Whether You’re 
Running Insecure Protocols
There are many ways you can end up running insecure or deprecated protocols or protocol 

versions in your environment, but only a few ways to find them and get them out.

When it comes to the introduction of insecure protocols, the "tyranny of default" is often to 

blame. Devices and software that communicate across the network are configured with 

default settings that may go out of date over time. If a new device or solution is introduced 

into the environment, but left to its default configuration, it may run protocols that are no 

longer considered secure.

Similarly, cloud systems and workloads use configuration templates to determine their

protocol usage, and over time, as new protocols are developed and old versions deprecated, 

these configuration templates may go out of date and need to be updated. Any new

workloads created with an older template may introduce insecure protocols into the environ-

ment. Because of the often short-lived and ephemeral nature of cloud workloads, it can be 

very challenging to catch these instances of insecure protocol usage and know how to get

them out of your system. 

So, how do you do it?

Manual, Point-in-Time Audit

Maintaining an inventory of software and hardware in your environment is a fundamental 

necessity for security hygiene, and is recommended in the first and second security controls 

in the CIS Top 20. Despite being a vital security practice, maintaining this inventory is a 

challenge for many organizations. One way to gather such an inventory is through a manual 

audit using a combination of scanning tools, ranging from the free, open source tool Nmap to 

costlier commercial products.

While scanning the network for devices and protocols in use can provide a valuable snapshot 

of a point in time, it doesn't protect you against new occurrences of insecure protocols. 

Neither does a point-in-time scan offer any guarantee that you've discovered every instance 

of an insecure protocol actively in use. Particularly in a large and heavily segmented network, 

scanning tools may simply not uncover what you're looking for. As one security analyst once 

remarked, “The network is dark and full of terrors.”

So how do you find insecure protocols in an enterprise-scale network?

Continuous Network Monitoring

By passively monitoring and analyzing network traffic continuously, you can discover each 

protocol that is in use on the network at any given moment. This addresses two of the 

primary challenges:

1. Manual audits only give you a point-in-time snapshot. There are many well-docu-

mented ways for insecure protocols to be reintroduced to your environment between 

audits, which are usually conducted quarterly at best.

2. Manual audits are extremely time- and energy-consuming, taking away time from 

other more critical security functions like responding to actual threats.

With the increase in remote and distributed workforces and hybrid environments with both 

on-premises and cloud components, the number of ways that insecure protocols may be 

introduced into your environment have multiplied at the same time that maintaining an 

accurate inventory has grown massively more difficult. Continuous monitoring of network 

traffic for protocol identification and threat detection and response has gone from a 

nice-to-have to a must-have.

≥10 Devices 

Environments with devices running SMBv1

67%

≥50 Devices 37%

≥100 Devices 31%

SMBv1 doesn’t 
need to be installed 
on every device in 
the environment to 
be used to launch a 
catastrophic attack. 
It only needs to be 
on one.

Fig. 2 This chart shows the prevalence of devices running SMBv1 across environments. 



What’s in a Protocol?
Protocols are the lingua franca of the network, allowing connected devices to communicate 

with each other regardless of differences in operating systems, hardware, and processes. 

Protocols work by establishing a set of rules for how data is transmitted between different 

network devices, and include everything from how that data is protected (encryption) to how 

domains are resolved. While protocols for network communication can be updated and 

refined, and new ones can be created, many protocols in common use today have been 

around for decades.

Different protocols are used in different ways, both by IT teams and malicious actors. For 

example, the Domain Name System (DNS) protocol makes navigating the internet easier for 

users by mapping IP addresses to human readable domain names, but is frequently misused 

by attackers for malicious purposes such as command and control (C2) and data exfiltration.

You can learn more about protocols and threat activities associated with them by visiting the 

ExtraHop Network Protocol Library.

This report focuses specifically on four of those protocols: SMBv1, LLMNR, NTLM, and HTTP, 

the prevalence of these protocols within enterprise IT environments, and the risks associated 

with each.

Server Message Block (SMB) v1
Server Message Block (SMB) is a protocol that was developed in the 1980s and is used 

primarily for sharing things like files, printer services, and communication between networked 

devices. During the 1980s and 1990s, Microsoft attempted to rebrand SMBv1 under the 

name Common Internet File System (CIFS) and expanded its capabilities to include the 

transmission of large files and the establishment of direct connections over port 445.

As it turned out, SMBv1 (CIFS) was notoriously buggy, chatty, and difficult to use, and had 

major security deficiencies. When Microsoft introduced SMBv2 in 2006 they abandoned the 

CIFS nomenclature altogether. Six years later, in 2012, Microsoft introduced SMBv3, and in 

2013 the company officially deprecated SMBv1.

Despite the deprecation, Microsoft continued to install SMBv1 on its Windows Servers until 

2016. By that time, Microsoft was actively urging the Microsoft user community to stop using 

SMBv1, but with millions of machines using the protocol, many of the warnings, including 

those from within the Windows Server engineering group, went unheeded. This is why, when 

EternalBlue and related exploits—known collectively as Eternal(x)—came to light in 2017, 

SMBv1 was still pervasive in IT environments around the world. The Eternal(x) vulnerabilities 

exploit a buffer overflow vulnerability in SMBv1.

How Common is SMBv1?
Based on research conducted by ExtraHop in the first three months of 2021, 88% of 

environments have at least one device running SMBv1. While that might seem like a staggering 

number, the good news is that in the cases where it’s just one device, this is probably 

intentional. Red teams still use SMBv1 as a tool in penetration testing exercises, which 

probably accounts for those environments with just one instance.

The problem is that 67% of environments have at least 10 devices running SMBv1 and that’s 

likely not intentional. While 10 devices might seem like a relatively small number, the remote 

code execution enabled by Eternal(x) exploits makes any device running SMBv1 an easy pivot 

point from which to launch a large-scale attack. These 10 devices might be a tiny fraction of 

the assets in an environment, but defense is a zero-fail mission. SMBv1 doesn’t need to be 

installed on every device in the environment to be used to launch a catastrophic attack. It only 

needs to be on one.

The numbers only get scarier from there. According to ExtraHop data, 37% of environments 

have at least 50 devices running SMBv1, and 31% of environments have 100 or more 

devices still using the protocol four years after WannaCry and NotPetya rocked the world.

In the Wild: SMBv1
A High Stakes Gamble

In early 2019, almost two years after the EternalBlue vulnerability came to light, ExtraHop 

was working with a branch of a US Federal Agency. The agency was aware that it still had 

machines running SMBv1. What they didn’t know was which machines, or how many.

Their challenge was two-fold. First, the reason they were still running SMBv1 is because so 

many of their legacy systems used the protocol. Getting rid of it was a massive logistical 

undertaking, as many of their systems still ran on Windows XP, which couldn’t use later 

versions of the protocol. However, they’d recently been advised by their NAS vendor that 

the vendor was going to stop supporting the SMBv1 protocol.

Second, while they had continued using SMBv1 long after its vulnerabilities (and the damage 

that could be wrought through their exploitation) had come to light, they were well aware of 

the risks associated with the protocol. 

The security team at the agency used their SMB/CIFS Dashboard in Reveal(x) to pull up all 

devices running SMBv1. They quickly found that they still had a large number of devices 

using the protocol, including their entire VDI deployment. This protocol exposed the branch 

of the agency to huge risk of a fast-moving ransomware attack, among other things.

While the transition away from SMBv1 took effort, the move ultimately meant a more secure 

environment for the agency. Unfortunately, the ongoing use of legacy systems that don’t 

support later versions of the SMB protocol are a major reason that many organizations 

remain exposed to Eternal(x) exploitation.

A Brush with Ransomware Four Years After WannaCry

In March 2021, news broke that Taiwanese computing giant Acer had been severely 

compromised by ransomware. The $50 million ransom demand was the largest in history, 

and REvil, the cybercriminals responsible for the attack, had architected a trump card. Not 

only had their attack encrypted a large percentage of the company’s files, they had also 

exfiltrated huge quantities of data. In the event Acer had a back-up, they could still extract 

the ransom by threatening to leak the stolen data.

The exfiltrate-then-encrypt play is becoming increasingly common in ransomware attacks as 

cybercriminals try to maximize their leverage. Just a few months before the disclosure of the 

Acer attack, an ExtraHop customer experienced a very similar attack.

In late 2020, a large ExtraHop customer based in North America was alerted to a 

Ransomware Activity detection in Reveal(x) 360. The same devices were also seeing alerts 

for detections on SMB data staging and suspicious file reads. By looking at Related 

Detections, the customer’s security team determined that the attackers were also in the 

process of exfiltrating data before they encrypted it in an effort to inflict maximum damage.

The team was able to quickly identify and quarantine affected assets and accounts, and as a 

result, the attackers were only able to encrypt a small percentage of targeted files.

While the customer averted disaster in this case, it serves as a cautionary tale, not only 

about the new ransomware playbook, but about the ongoing risks associated with SMBv1. 

Devices running this protocol remain an easy target for attackers, especially ransomware 

gangs more interested in money than in information.

You can read more about this ransomware trend here. 

The Risks of SMBv1

The reason that SMBv1 has been so successfully exploited for attacks like WannaCry and 

NotPetya is that, if an attacker can successfully access a server with SMBv1 enabled, they 

can quickly spread malware to other unpatched servers across a network. In an 

SMBv1-based attack, the attacker sends multiple requests, or messages, to a file server over 

SMBv1. Each SMBv1 message is specially designed to manipulate the file server memory in a 

way that eventually causes a buffer overflow, which enables the attacker to deliver a 

malicious payload, such as ransomware, to the kernel of the server.

Buffer Overflow attacks of system level services are particularly dangerous because they 

provide attackers with a wide latitude for follow-on activities such as injecting malicious 

payloads, scraping user credentials from memory, and setting up hidden persistence 

mechanisms that reside only in memory.

INSECURE PROTOCOL USAGE EXPOSES ORGANIZATIONS TO CYBERSECURITY RISK  |   SECURITY ADVISORY     7

An attacker can 
quickly spread 
malware to other 
unpatched 
servers across a 
network.

Link-Local Multicast Name Resolution (LLMNR)
Link-Local Multicast Name Resolution (LLMNR) is a protocol that allows name resolution 

without a DNS server. Essentially, LLMNR is a layer 2 protocol that provides a hostname-to-IP 

resolution on the basis of a network packet that’s transmitted via Port UDP 5355 to the 

multicast network address (224.0.0.0 through 239.255.255.255). The multicast packet queries 

all network interfaces looking for any that can self-identify authoritatively as the hostname in 

the query.

LLMNR is distinct from other protocols described in this report, in that it was never adopted as 

an IETF standard protocol (although it was defined in RFC 4795).

LLMNR was originally created as a workaround to enable name resolution in environments in 

which DNS servers would be impractical, such as small private networks. LLMNR was created 

as a way to achieve name resolution without the onerous requirements of DNS. The protocol 

has been (and still is) used by operating systems, including Microsoft Windows, to identify 

networked devices like file servers.

How Common is LLMNR?
For a protocol that’s not quite a protocol—and a very risky one at that—it’s usage is still 

surprisingly common. De-identified network telemetry from ExtraHop Reveal(x) shows that 

70% of enterprise environments have at least 10 clients still running LLMNR. Unfortunately, as 

the device counts go up, the number of environments with vulnerable clients doesn’t decline 

by much. Fifty-five percent of environments have fifty or more LLMNR clients, while 46% have 

more than 100 such clients.

The Risks of LLMNR
While LLMNR provides a DNS-free mechanism for host-name resolution within a local 

environment, it also provides an avenue of attack for malicious actors. An attacker can use the 

protocol to trick a victim into revealing user credentials. This is done by leveraging LLMNR to 

gain access to the user credential hashes, which can then be cracked to reveal actual 

credentials, especially if older MS password techniques like LANMAN are not disabled.

How does this work if you’re the attacker? The first step is to configure a node on the network 

to answer that it is the hostname associated with any query. For the requesting client, this 

creates a race condition in which the client will not only accept, but trust whichever device 

answers first. This is because the protocol specifications of LLMNR state that all client 

responses are trustworthy.

This is when credential hashes come into play. When the client receives a definitive “It’s me!” 

from a compromised device, it automatically sends a hashed copy of the current user's 

credentials as part of the response. This provides the attacker with a hashed copy of the 

credentials which can be decrypted, or leveraged via pass-the-hash attacks to begin 

escalating privileges within the broader network.

While DNS is not without its challenges, it’s a far more secure way to accurately identify host 

names. With that said, DNS should be carefully monitored to ensure that it is not itself being 

utilized for nefarious purposes. 

Fig. 4 When a DNS request for a hostname cannot be resolved or a DNS server is unavailable (1), clients with LLMNR enabled 

will broadcast a query to all local devices over UDP 5355 (2). If an attacker is listening, they can respond and impersonate the 

requested host (3). If the host is an authenticated resource, the client response will contain user credentials. 

New Technology LAN Manager (NTLM) v1
New Technology LAN Manager (NTLM) is a proprietary Microsoft protocol introduced in 

1993 to replace Microsoft LAN Manager (LANMAN). NTLM is part of a cohort of Microsoft 

security protocols designed to collectively provide authentication, integrity, and 

confidentiality to users.

NTLM is what is known as a challenge-response protocol used by servers to authenticate 

clients using password hashes. In its original incarnation NTLMv1, used a fairly simple (and 

easily compromised) authentication method. The process by which NTLM authenticates 

users is described by Microsoft below:

NTLM credentials are based on data obtained during the interactive logon process and 
consist of a domain name, a user name, and a one-way hash of the user's password. 
NTLM uses an encrypted challenge/response protocol to authenticate a user without 
sending the user's password over the wire. Instead, the system requesting 
authentication must perform a calculation that proves it has access to the secured 
NTLM credentials.

While NTLMv1 was eventually replaced by NTLMv2, the next generation of the protocol 

didn’t fare much better when it came to actually protecting passwords from being 

intercepted by malicious actors. NTLMv2 added a few features, including a time stamp and a 

usernames appended to the hash. While this helps mitigate offline relay attacks, it introduced 

other vulnerabilities and did little to improve the overall security of the protocol.

The problem with this cryptography scheme is that it’s incredibly easy to crack. In 2012, it 

was demonstrated that every possible permutation of NTLM’s eight-byte hash could be 

cracked in under six hours. In 2019, an open-source password recovery tool known as 

HashCat demonstrated that it could crack any eight-byte hash in under two and a half hours, 

a fact the The Register noted—with its trademark snark—was less time than it took to watch 

Avengers: Endgame.

How Common is NTLMv1?

Despite the recommendation from Microsoft that organizations cease use of NTLM in favor 

of the much more secure Kerberos authentication protocol, NTLM is still quite common in 

enterprise environments. While ExtraHop did not look at the ubiquity of NTLMv2, the less 

secure of the two versions, NTLMv1 is still in broad use.

According to network telemetry from Reveal(x), 34% of environments have at least 10 clients 

running NTLMv1, less than the number of organizations with the same number of devices 

running SMBv1 and LLMNR, but still a significant number for a protocol that has been 

deprecated for over a decade, with 23% of organizations having fifty or more clients using 

NTLMv1, while 19% have one hundred or more clients using the protocol for authentication.

The Risks of NTLM

Using NTLM for authentication exposes organizations to a number of risks. A skilled attacker 

can easily intercept NTLM hashes that are equivalent to passwords or crack NTLMv1 

passwords offline. A successful exploit against NTLMv1 authentication can enable an 

attacker to launch machine-in-the-middle (MITM) attacks or take complete control of a 

domain.

Fig. 6 During an NTLM relay attack, the attacker acts as a machine-in-the-middle (MITM), receiving and then forwarding the 

NTLM messages [1]. The attacker then creates an authenticated session with the server [2]. With this technique, the attacker 

only needs the NTLM hash to move laterally across the network or access sensitive information stored on servers.

In an MITM attack, malicious actors insert themselves between the client and the server, 

allowing them to intercept all data transmitted between those devices. If the 

communications are not encrypted, or the ciphers are weak, as in the case of NTLM, MITM 

attacks can result in compromised credentials, scrapped PII, stolen trade secrets, the 

injection of fake or manipulated data, and much more. In fact, recently patched flaws in 

current NTLM versions allow attackers to force a downgrade of the security features within 

the NTLM protocol. Attackers can then leverage stolen credentials to pivot between 

machines until they identify domain admin accounts that can be used for direct AD Server 

access and a full domain takeover.

Plaintext Credentials over Hypertext 
Transfer Protocol (HTTP)
The Hypertext Transfer Protocol (HTTP) is almost certainly the most commonly known 

application protocol. Whether you know anything about networking or not, chances are 

you’ve seen it at the beginning of every web address you’ve ever visited. A distributed, 

collaborative, hypermedia information system, it allows users to communicate data on the 

World Wide Web. Alongside its sister protocol, HTML, it’s the foundation of the internet we 

know today.

In 1995, four years after the introduction of HTTP, it’s more secure version, HTTPS, arrived 

on the scene. This was in response to demand for companies to be able to process payment 

information over the internet—something that couldn’t be done over HTTP without blatantly 

exposing payment card information. Unlike HTTP, HTTPS uses TLS to encrypt the 

communications between clients and servers, preventing people from intercepting and 

reading your data in flight. It also preserves the integrity of data, helping to prevent it from 

being broken or corrupted.

While HTTP has never been officially deprecated, in 2017, Google took a major step toward 

phasing out the use of insecure HTTP. In January of 2017, Google Chrome started marking all 

non-HTTPS websites as “insecure.” Since that time, any website that stores information such 

as login credentials, credit card information, or PII must use HTTPS in order to function 

effectively in Chrome. Google also gives search priority to HTTPS sites.

While HTTP is not inherently problematic, its use for transmission of sensitive data is 

definitely a major risk. When plaintext credentials are transmitted over HTTP, those 

credentials are left exposed, the internet equivalent of shouting passwords across a crowded 

room, making it trivial for anyone to intercept and steal those credentials.  

How Common is Plaintext over HTTP?

Detections data from ExtraHop Reveal(x) 360 shows that 81 of 100 enterprise environments 

still use insecure HTTP credentials:

In the Wild: Plaintext Credentials over HTTP

In March 2021, ExtraHop experts were working with a major metropolitan law enforcement 

agency when Reveal(x) encountered a “Credentials Sent over HTTP” detection. The detection 

showed that the device sending credentials was a law enforcement agency laptop. The 

hostname matched the naming scheme for agency laptops, the IP address was within agency 

domain space, and the user associated with the laptop was a law enforcement officer with 

the agency.

The security team then pivoted to look at the target of the HTTP credentials, which 

happened to be an internet address. Looking at related records, the team identified the 

address as the domain for a common law enforcement research forum that’s also available to 

the general public. The domain was HTTP, not HTTPS.

Even more concerning was the fact that the officer was accessing a portion of the site for 

verified members (typically law enforcement agents and other investigators) that requires a 

login. Because the domain was HTTP and not HTTPS, usernames and passwords were both 

sent in the clear, making it easy for malicious actors to find and steal those credentials 

directly from the web.

Further investigation found that the site in question had a proper SSL certificate and had SSL 

enabled. The site was just not configured to make encryption mandatory, potentially 

exposing the login credentials of thousands of law enforcement officers and other 

investigators who are verified site users.

The Risks of Plaintext Credentials over HTTP

As illustrated in the example above, sending plaintext credentials over HTTP exposes users 

and the organizations for which they work to a number of risks. In addition to credentials, 

HTTP websites can easily expose sensitive customer data such as credit card information 

and PII. 

Of course, even HTTPS isn’t foolproof. Heartbleed, a serious vulnerability in OpenSSL that 

first came to light in 2014, is a classic example of how HTTPS can be exploited. Under 

normal conditions, SSL/TLS encryption protects information—such as logins and credit card 

numbers—being transmitted over the internet. The Heartbleed vulnerability inadvertently 

exposed the memory of systems protected by OpenSSL, compromising the secret keys used 

to encrypt the traffic and giving attackers access to users names, passwords, and other 

sensitive information.

Because HTTP or HTTPS are often used to transmit user input from websites and web 

applications, the protocols are sometimes abused to transmit malicious content from the 

public internet into a private environment. For example, an attacker using the SQL injection 

tactic sends SQL statements hidden in HTTP headers or other user-manipulatable fields in 

the HTTP protocol. The encryption used by HTTPS can actually make it more challenging to 

detect SQL injection attacks.

Even with vulnerabilities like Heartbleed, HTTPS is still far more secure than HTTP for 

transmission of sensitive information.

A Note on TLS 1.0/1.1
Recently IETF announced the formal deprecation of the TLS protocol version 1.0 and 1.1. In 

the coming months, ExtraHop will carefully monitor the ongoing use of these protocol 

versions across enterprise environments to understand how and if it is being phased out.

How to Determine Whether You’re 
Running Insecure Protocols
There are many ways you can end up running insecure or deprecated protocols or protocol 

versions in your environment, but only a few ways to find them and get them out.

When it comes to the introduction of insecure protocols, the "tyranny of default" is often to 

blame. Devices and software that communicate across the network are configured with 

default settings that may go out of date over time. If a new device or solution is introduced 

into the environment, but left to its default configuration, it may run protocols that are no 

longer considered secure.

Similarly, cloud systems and workloads use configuration templates to determine their 

protocol usage, and over time, as new protocols are developed and old versions deprecated, 

these configuration templates may go out of date and need to be updated. Any new 

workloads created with an older template may introduce insecure protocols into the environ-

ment. Because of the often short-lived and ephemeral nature of cloud workloads, it can be 

very challenging to catch these instances of insecure protocol usage and know how to get 

them out of your system. 

So, how do you do it?

Manual, Point-in-Time Audit

Maintaining an inventory of software and hardware in your environment is a fundamental 

necessity for security hygiene, and is recommended in the first and second security controls 

in the CIS Top 20. Despite being a vital security practice, maintaining this inventory is a 

challenge for many organizations. One way to gather such an inventory is through a manual 

audit using a combination of scanning tools, ranging from the free, open source tool Nmap to 

costlier commercial products.

While scanning the network for devices and protocols in use can provide a valuable snapshot 

of a point in time, it doesn't protect you against new occurrences of insecure protocols. 

Neither does a point-in-time scan offer any guarantee that you've discovered every instance 

of an insecure protocol actively in use. Particularly in a large and heavily segmented network, 

scanning tools may simply not uncover what you're looking for. As one security analyst once 

remarked, “The network is dark and full of terrors.” 

So how do you find insecure protocols in an enterprise-scale network?

Continuous Network Monitoring

By passively monitoring and analyzing network traffic continuously, you can discover each 

protocol that is in use on the network at any given moment. This addresses two of the 

primary challenges:

1. Manual audits only give you a point-in-time snapshot. There are many well-docu-

mented ways for insecure protocols to be reintroduced to your environment between 

audits, which are usually conducted quarterly at best.

2. Manual audits are extremely time- and energy-consuming, taking away time from 

other more critical security functions like responding to actual threats.

With the increase in remote and distributed workforces and hybrid environments with both 

on-premises and cloud components, the number of ways that insecure protocols may be 

introduced into your environment have multiplied at the same time that maintaining an 

accurate inventory has grown massively more difficult. Continuous monitoring of network 

traffic for protocol identification and threat detection and response has gone from a 

nice-to-have to a must-have.

https://www.extrahop.com/company/blog/2021/ransomware-exfiltration-and-revil-attack/


What’s in a Protocol?
Protocols are the lingua franca of the network, allowing connected devices to communicate 

with each other regardless of differences in operating systems, hardware, and processes. 

Protocols work by establishing a set of rules for how data is transmitted between different

network devices, and include everything from how that data is protected (encryption) to how

domains are resolved. While protocols for network communication can be updated and 

refined, and new ones can be created, many protocols in common use today have been 

around for decades.

Different protocols are used in different ways, both by IT teams and malicious actors. For

example, the Domain Name System (DNS) protocol makes navigating the internet easier for

users by mapping IP addresses to human readable domain names, but is frequently misused 

by attackers for malicious purposes such as command and control (C2) and data exfiltration.

You can learn more about protocols and threat activities associated with them by visiting the 

ExtraHop Network Protocol Library.

This report focuses specifically on four of those protocols: SMBv1, LLMNR, NTLM, and HTTP, 

the prevalence of these protocols within enterprise IT environments, and the risks associated 

with each.

Server Message Block (SMB) v1
Server Message Block (SMB) is a protocol that was developed in the 1980s and is used 

primarily for sharing things like files, printer services, and communication between networked 

devices. During the 1980s and 1990s, Microsoft attempted to rebrand SMBv1 under the 

name Common Internet File System (CIFS) and expanded its capabilities to include the 

transmission of large files and the establishment of direct connections over port 445.

As it turned out, SMBv1 (CIFS) was notoriously buggy, chatty, and difficult to use, and had 

major security deficiencies. When Microsoft introduced SMBv2 in 2006 they abandoned the 

CIFS nomenclature altogether. Six years later, in 2012, Microsoft introduced SMBv3, and in 

2013 the company officially deprecated SMBv1.

Despite the deprecation, Microsoft continued to install SMBv1 on its Windows Servers until 

2016. By that time, Microsoft was actively urging the Microsoft user community to stop using 

SMBv1, but with millions of machines using the protocol, many of the warnings, including 

those from within the Windows Server engineering group, went unheeded. This is why, when 

EternalBlue and related exploits—known collectively as Eternal(x)—came to light in 2017, 

SMBv1 was still pervasive in IT environments around the world. The Eternal(x) vulnerabilities 

exploit a buffer overflow vulnerability in SMBv1.

How Common is SMBv1?
Based on research conducted by ExtraHop in the first three months of 2021, 88% of

environments have at least one device running SMBv1. While that might seem like a staggering 

number, the good news is that in the cases where it’s just one device, this is probably

intentional. Red teams still use SMBv1 as a tool in penetration testing exercises, which 

probably accounts for those environments with just one instance.

The problem is that 67% of environments have at least 10 devices running SMBv1 and that’s 

likely not intentional. While 10 devices might seem like a relatively small number, the remote 

code execution enabled by Eternal(x) exploits makes any device running SMBv1 an easy pivot 

point from which to launch a large-scale attack. These 10 devices might be a tiny fraction of

the assets in an environment, but defense is a zero-fail mission. SMBv1 doesn’t need to be 

installed on every device in the environment to be used to launch a catastrophic attack. It only

needs to be on one.

The numbers only get scarier from there. According to ExtraHop data, 37% of environments 

have at least 50 devices running SMBv1, and 31% of environments have 100 or more 

devices still using the protocol four years after WannaCry and NotPetya rocked the world.

In the Wild: SMBv1
A High Stakes Gamble

In early 2019, almost two years after the EternalBlue vulnerability came to light, ExtraHop 

was working with a branch of a US Federal Agency. The agency was aware that it still had 

machines running SMBv1. What they didn’t know was which machines, or how many.

Their challenge was two-fold. First, the reason they were still running SMBv1 is because so 

many of their legacy systems used the protocol. Getting rid of it was a massive logistical 

undertaking, as many of their systems still ran on Windows XP, which couldn’t use later

versions of the protocol. However, they’d recently been advised by their NAS vendor that 

the vendor was going to stop supporting the SMBv1 protocol.

Second, while they had continued using SMBv1 long after its vulnerabilities (and the damage 

that could be wrought through their exploitation) had come to light, they were well aware of

the risks associated with the protocol. 

The security team at the agency used their SMB/CIFS Dashboard in Reveal(x) to pull up all 

devices running SMBv1. They quickly found that they still had a large number of devices 

using the protocol, including their entire VDI deployment. This protocol exposed the branch 

of the agency to huge risk of a fast-moving ransomware attack, among other things.

While the transition away from SMBv1 took effort, the move ultimately meant a more secure 

environment for the agency. Unfortunately, the ongoing use of legacy systems that don’t 

support later versions of the SMB protocol are a major reason that many organizations 

remain exposed to Eternal(x) exploitation.

A Brush with Ransomware Four Years After WannaCry

In March 2021, news broke that Taiwanese computing giant Acer had been severely

compromised by ransomware. The $50 million ransom demand was the largest in history, 

and REvil, the cybercriminals responsible for the attack, had architected a trump card. Not

only had their attack encrypted a large percentage of the company’s files, they had also 

exfiltrated huge quantities of data. In the event Acer had a back-up, they could still extract 

the ransom by threatening to leak the stolen data.

The exfiltrate-then-encrypt play is becoming increasingly common in ransomware attacks as 

cybercriminals try to maximize their leverage. Just a few months before the disclosure of the 

Acer attack, an ExtraHop customer experienced a very similar attack.

In late 2020, a large ExtraHop customer based in North America was alerted to a 

Ransomware Activity detection in Reveal(x) 360. The same devices were also seeing alerts 

for detections on SMB data staging and suspicious file reads. By looking at Related 

Detections, the customer’s security team determined that the attackers were also in the 

process of exfiltrating data before they encrypted it in an effort to inflict maximum damage.

The team was able to quickly identify and quarantine affected assets and accounts, and as a 

result, the attackers were only able to encrypt a small percentage of targeted files.

While the customer averted disaster in this case, it serves as a cautionary tale, not only

about the new ransomware playbook, but about the ongoing risks associated with SMBv1. 

Devices running this protocol remain an easy target for attackers, especially ransomware 

gangs more interested in money than in information.

You can read more about this ransomware trend here. 

The Risks of SMBv1

The reason that SMBv1 has been so successfully exploited for attacks like WannaCry and 

NotPetya is that, if an attacker can successfully access a server with SMBv1 enabled, they

can quickly spread malware to other unpatched servers across a network. In an 

SMBv1-based attack, the attacker sends multiple requests, or messages, to a file server over

SMBv1. Each SMBv1 message is specially designed to manipulate the file server memory in a 

way that eventually causes a buffer overflow, which enables the attacker to deliver a 

malicious payload, such as ransomware, to the kernel of the server.

Buffer Overflow attacks of system level services are particularly dangerous because they

provide attackers with a wide latitude for follow-on activities such as injecting malicious 

payloads, scraping user credentials from memory, and setting up hidden persistence 

mechanisms that reside only in memory.
The Risks of LLMNR
While LLMNR provides a DNS-free mechanism for host-name resolution within a local 

environment, it also provides an avenue of attack for malicious actors. An attacker can use the 

protocol to trick a victim into revealing user credentials. This is done by leveraging LLMNR to 

gain access to the user credential hashes, which can then be cracked to reveal actual 

credentials, especially if older MS password techniques like LANMAN are not disabled.

How does this work if you’re the attacker? The first step is to configure a node on the network 

to answer that it is the hostname associated with any query. For the requesting client, this 

creates a race condition in which the client will not only accept, but trust whichever device 

answers first. This is because the protocol specifications of LLMNR state that all client 

responses are trustworthy.

© 2020 ExtraHop Networks, Inc., Reveal(x), Reveal(x) Cloud, and ExtraHop are registered trademarks or marks of ExtraHop Networks, Inc.

INSECURE PROTOCOL USAGE EXPOSES ORGANIZATIONS TO CYBERSECURITY RISK  |   SECURITY ADVISORY     8

This is when credential hashes come into play. When the client receives a definitive “It’s me!”

from a compromised device, it automatically sends a hashed copy of the current user's 

credentials as part of the response. This provides the attacker with a hashed copy of the 

credentials which can be decrypted, or leveraged via pass-the-hash attacks to begin 

escalating privileges within the broader network.

While DNS is not without its challenges, it’s a far more secure way to accurately identify host

names. With that said, DNS should be carefully monitored to ensure that it is not itself being

utilized for nefarious purposes. 

Fig. 4 When a DNS request for a hostname cannot be resolved or a DNS server is unavailable (1), clients with LLMNR enabled 

will broadcast a query to all local devices over UDP 5355 (2). If an attacker is listening, they can respond and impersonate the 

requested host (3). If the host is an authenticated resource, the client response will contain user credentials. 

New Technology LAN Manager (NTLM) v1
New Technology LAN Manager (NTLM) is a proprietary Microsoft protocol introduced in 

1993 to replace Microsoft LAN Manager (LANMAN). NTLM is part of a cohort of Microsoft 

security protocols designed to collectively provide authentication, integrity, and 

confidentiality to users.

NTLM is what is known as a challenge-response protocol used by servers to authenticate 

clients using password hashes. In its original incarnation NTLMv1, used a fairly simple (and 

easily compromised) authentication method. The process by which NTLM authenticates 

users is described by Microsoft below:

NTLM credentials are based on data obtained during the interactive logon process and 
consist of a domain name, a user name, and a one-way hash of the user's password. 
NTLM uses an encrypted challenge/response protocol to authenticate a user without 
sending the user's password over the wire. Instead, the system requesting 
authentication must perform a calculation that proves it has access to the secured 
NTLM credentials.

While NTLMv1 was eventually replaced by NTLMv2, the next generation of the protocol 

didn’t fare much better when it came to actually protecting passwords from being 

intercepted by malicious actors. NTLMv2 added a few features, including a time stamp and a 

usernames appended to the hash. While this helps mitigate offline relay attacks, it introduced 

other vulnerabilities and did little to improve the overall security of the protocol.

The problem with this cryptography scheme is that it’s incredibly easy to crack. In 2012, it 

was demonstrated that every possible permutation of NTLM’s eight-byte hash could be 

cracked in under six hours. In 2019, an open-source password recovery tool known as 

HashCat demonstrated that it could crack any eight-byte hash in under two and a half hours, 

a fact the The Register noted—with its trademark snark—was less time than it took to watch 

Avengers: Endgame.

How Common is NTLMv1?

Despite the recommendation from Microsoft that organizations cease use of NTLM in favor

of the much more secure Kerberos authentication protocol, NTLM is still quite common in 

enterprise environments. While ExtraHop did not look at the ubiquity of NTLMv2, the less 

secure of the two versions, NTLMv1 is still in broad use.

According to network telemetry from Reveal(x), 34% of environments have at least 10 clients 

running NTLMv1, less than the number of organizations with the same number of devices 

running SMBv1 and LLMNR, but still a significant number for a protocol that has been 

deprecated for over a decade, with 23% of organizations having fifty or more clients using 

NTLMv1, while 19% have one hundred or more clients using the protocol for authentication.

The Risks of NTLM

Using NTLM for authentication exposes organizations to a number of risks. A skilled attacker

can easily intercept NTLM hashes that are equivalent to passwords or crack NTLMv1 

passwords offline. A successful exploit against NTLMv1 authentication can enable an 

attacker to launch machine-in-the-middle (MITM) attacks or take complete control of a 

domain.

Fig. 6 During an NTLM relay attack, the attacker acts as a machine-in-the-middle (MITM), receiving and then forwarding the 

NTLM messages [1]. The attacker then creates an authenticated session with the server [2]. With this technique, the attacker

only needs the NTLM hash to move laterally across the network or access sensitive information stored on servers.

In an MITM attack, malicious actors insert themselves between the client and the server, 

allowing them to intercept all data transmitted between those devices. If the 

communications are not encrypted, or the ciphers are weak, as in the case of NTLM, MITM 

attacks can result in compromised credentials, scrapped PII, stolen trade secrets, the 

injection of fake or manipulated data, and much more. In fact, recently patched flaws in 

current NTLM versions allow attackers to force a downgrade of the security features within 

the NTLM protocol. Attackers can then leverage stolen credentials to pivot between 

machines until they identify domain admin accounts that can be used for direct AD Server

access and a full domain takeover.

Plaintext Credentials over Hypertext 
Transfer Protocol (HTTP)
The Hypertext Transfer Protocol (HTTP) is almost certainly the most commonly known 

application protocol. Whether you know anything about networking or not, chances are 

you’ve seen it at the beginning of every web address you’ve ever visited. A distributed, 

collaborative, hypermedia information system, it allows users to communicate data on the 

World Wide Web. Alongside its sister protocol, HTML, it’s the foundation of the internet we 

know today.

In 1995, four years after the introduction of HTTP, it’s more secure version, HTTPS, arrived 

on the scene. This was in response to demand for companies to be able to process payment 

information over the internet—something that couldn’t be done over HTTP without blatantly

exposing payment card information. Unlike HTTP, HTTPS uses TLS to encrypt the 

communications between clients and servers, preventing people from intercepting and 

reading your data in flight. It also preserves the integrity of data, helping to prevent it from 

being broken or corrupted.

While HTTP has never been officially deprecated, in 2017, Google took a major step toward 

phasing out the use of insecure HTTP. In January of 2017, Google Chrome started marking all 

non-HTTPS websites as “insecure.” Since that time, any website that stores information such 

as login credentials, credit card information, or PII must use HTTPS in order to function 

effectively in Chrome. Google also gives search priority to HTTPS sites.

While HTTP is not inherently problematic, its use for transmission of sensitive data is 

definitely a major risk. When plaintext credentials are transmitted over HTTP, those 

credentials are left exposed, the internet equivalent of shouting passwords across a crowded 

room, making it trivial for anyone to intercept and steal those credentials.  

How Common is Plaintext over HTTP?

Detections data from ExtraHop Reveal(x) 360 shows that 81 of 100 enterprise environments 

still use insecure HTTP credentials:

In the Wild: Plaintext Credentials over HTTP

In March 2021, ExtraHop experts were working with a major metropolitan law enforcement 

agency when Reveal(x) encountered a “Credentials Sent over HTTP” detection. The detection 

showed that the device sending credentials was a law enforcement agency laptop. The 

hostname matched the naming scheme for agency laptops, the IP address was within agency

domain space, and the user associated with the laptop was a law enforcement officer with 

the agency.

The security team then pivoted to look at the target of the HTTP credentials, which 

happened to be an internet address. Looking at related records, the team identified the 

address as the domain for a common law enforcement research forum that’s also available to 

the general public. The domain was HTTP, not HTTPS.

Even more concerning was the fact that the officer was accessing a portion of the site for

verified members (typically law enforcement agents and other investigators) that requires a 

login. Because the domain was HTTP and not HTTPS, usernames and passwords were both 

sent in the clear, making it easy for malicious actors to find and steal those credentials 

directly from the web.

Further investigation found that the site in question had a proper SSL certificate and had SSL

enabled. The site was just not configured to make encryption mandatory, potentially

exposing the login credentials of thousands of law enforcement officers and other

investigators who are verified site users.

The Risks of Plaintext Credentials over HTTP

As illustrated in the example above, sending plaintext credentials over HTTP exposes users 

and the organizations for which they work to a number of risks. In addition to credentials, 

HTTP websites can easily expose sensitive customer data such as credit card information 

and PII. 

Of course, even HTTPS isn’t foolproof. Heartbleed, a serious vulnerability in OpenSSL that

first came to light in 2014, is a classic example of how HTTPS can be exploited. Under

normal conditions, SSL/TLS encryption protects information—such as logins and credit card 

numbers—being transmitted over the internet. The Heartbleed vulnerability inadvertently

exposed the memory of systems protected by OpenSSL, compromising the secret keys used 

to encrypt the traffic and giving attackers access to users names, passwords, and other

sensitive information.

Because HTTP or HTTPS are often used to transmit user input from websites and web 

applications, the protocols are sometimes abused to transmit malicious content from the 

public internet into a private environment. For example, an attacker using the SQL injection 

tactic sends SQL statements hidden in HTTP headers or other user-manipulatable fields in 

the HTTP protocol. The encryption used by HTTPS can actually make it more challenging to 

detect SQL injection attacks.

Even with vulnerabilities like Heartbleed, HTTPS is still far more secure than HTTP for

transmission of sensitive information.

A Note on TLS 1.0/1.1
Recently IETF announced the formal deprecation of the TLS protocol version 1.0 and 1.1. In 

the coming months, ExtraHop will carefully monitor the ongoing use of these protocol 

versions across enterprise environments to understand how and if it is being phased out.

How to Determine Whether You’re 
Running Insecure Protocols
There are many ways you can end up running insecure or deprecated protocols or protocol 

versions in your environment, but only a few ways to find them and get them out.

When it comes to the introduction of insecure protocols, the "tyranny of default" is often to 

blame. Devices and software that communicate across the network are configured with 

default settings that may go out of date over time. If a new device or solution is introduced 

into the environment, but left to its default configuration, it may run protocols that are no 

longer considered secure.

Similarly, cloud systems and workloads use configuration templates to determine their

protocol usage, and over time, as new protocols are developed and old versions deprecated, 

these configuration templates may go out of date and need to be updated. Any new

workloads created with an older template may introduce insecure protocols into the environ-

ment. Because of the often short-lived and ephemeral nature of cloud workloads, it can be 

very challenging to catch these instances of insecure protocol usage and know how to get

them out of your system. 

So, how do you do it?

Manual, Point-in-Time Audit

Maintaining an inventory of software and hardware in your environment is a fundamental 

necessity for security hygiene, and is recommended in the first and second security controls 

in the CIS Top 20. Despite being a vital security practice, maintaining this inventory is a 

challenge for many organizations. One way to gather such an inventory is through a manual 

audit using a combination of scanning tools, ranging from the free, open source tool Nmap to 

costlier commercial products.

While scanning the network for devices and protocols in use can provide a valuable snapshot 

of a point in time, it doesn't protect you against new occurrences of insecure protocols. 

Neither does a point-in-time scan offer any guarantee that you've discovered every instance 

of an insecure protocol actively in use. Particularly in a large and heavily segmented network, 

scanning tools may simply not uncover what you're looking for. As one security analyst once 

remarked, “The network is dark and full of terrors.”

So how do you find insecure protocols in an enterprise-scale network?

Continuous Network Monitoring

By passively monitoring and analyzing network traffic continuously, you can discover each 

protocol that is in use on the network at any given moment. This addresses two of the 

primary challenges:

1. Manual audits only give you a point-in-time snapshot. There are many well-docu-

mented ways for insecure protocols to be reintroduced to your environment between 

audits, which are usually conducted quarterly at best.

2. Manual audits are extremely time- and energy-consuming, taking away time from 

other more critical security functions like responding to actual threats.

With the increase in remote and distributed workforces and hybrid environments with both 

on-premises and cloud components, the number of ways that insecure protocols may be 

introduced into your environment have multiplied at the same time that maintaining an 

accurate inventory has grown massively more difficult. Continuous monitoring of network 

traffic for protocol identification and threat detection and response has gone from a 

nice-to-have to a must-have.

INTRODUCED

DEPRECATED

DAMAGES

2007

N/A

Unknown

LLMNR
70% of 
environments 
use LLMNR 
in 2021

≥10 Devices 

Link-Local Multicast Name Resolution (LLMNR)
Link-Local Multicast Name Resolution (LLMNR) is a protocol that allows name resolution 

without a DNS server. Essentially, LLMNR is a layer 2 protocol that provides a hostname-to-IP 

resolution on the basis of a network packet that’s transmitted via Port UDP 5355 to the 

multicast network address (224.0.0.0 through 239.255.255.255). The multicast packet queries 

all network interfaces looking for any that can self-identify authoritatively as the hostname in 

the query.

LLMNR is distinct from other protocols described in this report, in that it was never adopted 

as an IETF standard protocol (although it was defined in RFC 4795).

LLMNR was originally created as a workaround to enable name resolution in environments in 

which DNS servers would be impractical, such as small private networks. LLMNR was created 

as a way to achieve name resolution without the onerous requirements of DNS. The protocol 

has been (and still is) used by operating systems, including Microsoft Windows, to identify 

networked devices like file servers.

How Common is LLMNR?
For a protocol that’s not quite a protocol—and a very risky one at that—it’s usage is still 

surprisingly common. De-identified network telemetry from ExtraHop Reveal(x) shows that 

70% of enterprise environments have at least 10 clients still running LLMNR. Unfortunately, as 

the device counts go up, the number of environments with vulnerable clients doesn’t decline 

by much. Fifty-five percent of environments have fifty or more LLMNR clients, while 46% have 

more than 100 such clients.

Environments with devices running LLMNR

70%

≥50 Devices 55%

≥100 Devices 46%
Fig. 3 This chart shows the prevalence of devices running LLMNR across environments. 

https://tools.ietf.org/html/rfc4795


What’s in a Protocol?
Protocols are the lingua franca of the network, allowing connected devices to communicate 

with each other regardless of differences in operating systems, hardware, and processes. 

Protocols work by establishing a set of rules for how data is transmitted between different

network devices, and include everything from how that data is protected (encryption) to how

domains are resolved. While protocols for network communication can be updated and 

refined, and new ones can be created, many protocols in common use today have been 

around for decades.

Different protocols are used in different ways, both by IT teams and malicious actors. For

example, the Domain Name System (DNS) protocol makes navigating the internet easier for

users by mapping IP addresses to human readable domain names, but is frequently misused 

by attackers for malicious purposes such as command and control (C2) and data exfiltration.

You can learn more about protocols and threat activities associated with them by visiting the 

ExtraHop Network Protocol Library.

This report focuses specifically on four of those protocols: SMBv1, LLMNR, NTLM, and HTTP, 

the prevalence of these protocols within enterprise IT environments, and the risks associated 

with each.

Server Message Block (SMB) v1
Server Message Block (SMB) is a protocol that was developed in the 1980s and is used 

primarily for sharing things like files, printer services, and communication between networked 

devices. During the 1980s and 1990s, Microsoft attempted to rebrand SMBv1 under the 

name Common Internet File System (CIFS) and expanded its capabilities to include the 

transmission of large files and the establishment of direct connections over port 445.

As it turned out, SMBv1 (CIFS) was notoriously buggy, chatty, and difficult to use, and had 

major security deficiencies. When Microsoft introduced SMBv2 in 2006 they abandoned the 

CIFS nomenclature altogether. Six years later, in 2012, Microsoft introduced SMBv3, and in 

2013 the company officially deprecated SMBv1.

Despite the deprecation, Microsoft continued to install SMBv1 on its Windows Servers until 

2016. By that time, Microsoft was actively urging the Microsoft user community to stop using 

SMBv1, but with millions of machines using the protocol, many of the warnings, including 

those from within the Windows Server engineering group, went unheeded. This is why, when 

EternalBlue and related exploits—known collectively as Eternal(x)—came to light in 2017, 

SMBv1 was still pervasive in IT environments around the world. The Eternal(x) vulnerabilities 

exploit a buffer overflow vulnerability in SMBv1.

How Common is SMBv1?
Based on research conducted by ExtraHop in the first three months of 2021, 88% of

environments have at least one device running SMBv1. While that might seem like a staggering 

number, the good news is that in the cases where it’s just one device, this is probably

intentional. Red teams still use SMBv1 as a tool in penetration testing exercises, which 

probably accounts for those environments with just one instance.

The problem is that 67% of environments have at least 10 devices running SMBv1 and that’s 

likely not intentional. While 10 devices might seem like a relatively small number, the remote 

code execution enabled by Eternal(x) exploits makes any device running SMBv1 an easy pivot 

point from which to launch a large-scale attack. These 10 devices might be a tiny fraction of

the assets in an environment, but defense is a zero-fail mission. SMBv1 doesn’t need to be 

installed on every device in the environment to be used to launch a catastrophic attack. It only

needs to be on one.

The numbers only get scarier from there. According to ExtraHop data, 37% of environments 

have at least 50 devices running SMBv1, and 31% of environments have 100 or more 

devices still using the protocol four years after WannaCry and NotPetya rocked the world.

In the Wild: SMBv1
A High Stakes Gamble

In early 2019, almost two years after the EternalBlue vulnerability came to light, ExtraHop 

was working with a branch of a US Federal Agency. The agency was aware that it still had 

machines running SMBv1. What they didn’t know was which machines, or how many.

Their challenge was two-fold. First, the reason they were still running SMBv1 is because so 

many of their legacy systems used the protocol. Getting rid of it was a massive logistical 

undertaking, as many of their systems still ran on Windows XP, which couldn’t use later

versions of the protocol. However, they’d recently been advised by their NAS vendor that 

the vendor was going to stop supporting the SMBv1 protocol.

Second, while they had continued using SMBv1 long after its vulnerabilities (and the damage 

that could be wrought through their exploitation) had come to light, they were well aware of

the risks associated with the protocol. 

The security team at the agency used their SMB/CIFS Dashboard in Reveal(x) to pull up all 

devices running SMBv1. They quickly found that they still had a large number of devices 

using the protocol, including their entire VDI deployment. This protocol exposed the branch 

of the agency to huge risk of a fast-moving ransomware attack, among other things.

While the transition away from SMBv1 took effort, the move ultimately meant a more secure 

environment for the agency. Unfortunately, the ongoing use of legacy systems that don’t 

support later versions of the SMB protocol are a major reason that many organizations 

remain exposed to Eternal(x) exploitation.

A Brush with Ransomware Four Years After WannaCry

In March 2021, news broke that Taiwanese computing giant Acer had been severely

compromised by ransomware. The $50 million ransom demand was the largest in history, 

and REvil, the cybercriminals responsible for the attack, had architected a trump card. Not

only had their attack encrypted a large percentage of the company’s files, they had also 

exfiltrated huge quantities of data. In the event Acer had a back-up, they could still extract 

the ransom by threatening to leak the stolen data.

The exfiltrate-then-encrypt play is becoming increasingly common in ransomware attacks as 

cybercriminals try to maximize their leverage. Just a few months before the disclosure of the 

Acer attack, an ExtraHop customer experienced a very similar attack.

In late 2020, a large ExtraHop customer based in North America was alerted to a 

Ransomware Activity detection in Reveal(x) 360. The same devices were also seeing alerts 

for detections on SMB data staging and suspicious file reads. By looking at Related 

Detections, the customer’s security team determined that the attackers were also in the 

process of exfiltrating data before they encrypted it in an effort to inflict maximum damage.

The team was able to quickly identify and quarantine affected assets and accounts, and as a 

result, the attackers were only able to encrypt a small percentage of targeted files.

While the customer averted disaster in this case, it serves as a cautionary tale, not only

about the new ransomware playbook, but about the ongoing risks associated with SMBv1. 

Devices running this protocol remain an easy target for attackers, especially ransomware 

gangs more interested in money than in information.

You can read more about this ransomware trend here. 

The Risks of SMBv1

The reason that SMBv1 has been so successfully exploited for attacks like WannaCry and 

NotPetya is that, if an attacker can successfully access a server with SMBv1 enabled, they

can quickly spread malware to other unpatched servers across a network. In an 

SMBv1-based attack, the attacker sends multiple requests, or messages, to a file server over

SMBv1. Each SMBv1 message is specially designed to manipulate the file server memory in a 

way that eventually causes a buffer overflow, which enables the attacker to deliver a 

malicious payload, such as ransomware, to the kernel of the server.

Buffer Overflow attacks of system level services are particularly dangerous because they

provide attackers with a wide latitude for follow-on activities such as injecting malicious 

payloads, scraping user credentials from memory, and setting up hidden persistence 

mechanisms that reside only in memory.

Link-Local Multicast Name Resolution (LLMNR)
Link-Local Multicast Name Resolution (LLMNR) is a protocol that allows name resolution 

without a DNS server. Essentially, LLMNR is a layer 2 protocol that provides a hostname-to-IP

resolution on the basis of a network packet that’s transmitted via Port UDP 5355 to the 

multicast network address (224.0.0.0 through 239.255.255.255). The multicast packet queries 

all network interfaces looking for any that can self-identify authoritatively as the hostname in 

the query.

LLMNR is distinct from other protocols described in this report, in that it was never adopted as 

an IETF standard protocol (although it was defined in RFC 4795).

LLMNR was originally created as a workaround to enable name resolution in environments in 

which DNS servers would be impractical, such as small private networks. LLMNR was created 

as a way to achieve name resolution without the onerous requirements of DNS. The protocol 

has been (and still is) used by operating systems, including Microsoft Windows, to identify

networked devices like file servers.

How Common is LLMNR?
For a protocol that’s not quite a protocol—and a very risky one at that—it’s usage is still 

surprisingly common. De-identified network telemetry from ExtraHop Reveal(x) shows that 

70% of enterprise environments have at least 10 clients still running LLMNR. Unfortunately, as 

the device counts go up, the number of environments with vulnerable clients doesn’t decline 

by much. Fifty-five percent of environments have fifty or more LLMNR clients, while 46% have 

more than 100 such clients.

The Risks of LLMNR
While LLMNR provides a DNS-free mechanism for host-name resolution within a local 

environment, it also provides an avenue of attack for malicious actors. An attacker can use the 

protocol to trick a victim into revealing user credentials. This is done by leveraging LLMNR to 

gain access to the user credential hashes, which can then be cracked to reveal actual 

credentials, especially if older MS password techniques like LANMAN are not disabled.

How does this work if you’re the attacker? The first step is to configure a node on the network 

to answer that it is the hostname associated with any query. For the requesting client, this 

creates a race condition in which the client will not only accept, but trust whichever device 

answers first. This is because the protocol specifications of LLMNR state that all client

responses are trustworthy.

© 2020 ExtraHop Networks, Inc., Reveal(x), Reveal(x) Cloud, and ExtraHop are registered trademarks or marks of ExtraHop Networks, Inc.

INSECURE PROTOCOL USAGE EXPOSES ORGANIZATIONS TO CYBERSECURITY RISK  |   SECURITY ADVISORY    9

This is when credential hashes come into play. When the client receives a definitive “It’s me!” 

from a compromised device, it automatically sends a hashed copy of the current user's 

credentials as part of the response. This provides the attacker with a hashed copy of the 

credentials which can be decrypted, or leveraged via pass-the-hash attacks to begin 

escalating privileges within the broader network.

While DNS is not without its challenges, it’s a far more secure way to accurately identify host 

names. With that said, DNS should be carefully monitored to ensure that it is not itself being 

utilized for nefarious purposes. 

Fig. 4 When a DNS request for a hostname cannot be resolved or a DNS server is unavailable (1), clients with LLMNR enabled 

will broadcast a query to all local devices over UDP 5355 (2). If an attacker is listening, they can respond and impersonate the 

requested host (3). If the host is an authenticated resource, the client response will contain user credentials. 

New Technology LAN Manager (NTLM) v1
New Technology LAN Manager (NTLM) is a proprietary Microsoft protocol introduced in 

1993 to replace Microsoft LAN Manager (LANMAN). NTLM is part of a cohort of Microsoft 

security protocols designed to collectively provide authentication, integrity, and 

confidentiality to users.

NTLM is what is known as a challenge-response protocol used by servers to authenticate 

clients using password hashes. In its original incarnation NTLMv1, used a fairly simple (and 

easily compromised) authentication method. The process by which NTLM authenticates 

users is described by Microsoft below:

NTLM credentials are based on data obtained during the interactive logon process and 
consist of a domain name, a user name, and a one-way hash of the user's password. 
NTLM uses an encrypted challenge/response protocol to authenticate a user without 
sending the user's password over the wire. Instead, the system requesting 
authentication must perform a calculation that proves it has access to the secured 
NTLM credentials.

While NTLMv1 was eventually replaced by NTLMv2, the next generation of the protocol 

didn’t fare much better when it came to actually protecting passwords from being 

intercepted by malicious actors. NTLMv2 added a few features, including a time stamp and a 

usernames appended to the hash. While this helps mitigate offline relay attacks, it introduced 

other vulnerabilities and did little to improve the overall security of the protocol.

The problem with this cryptography scheme is that it’s incredibly easy to crack. In 2012, it 

was demonstrated that every possible permutation of NTLM’s eight-byte hash could be 

cracked in under six hours. In 2019, an open-source password recovery tool known as 

HashCat demonstrated that it could crack any eight-byte hash in under two and a half hours, 

a fact the The Register noted—with its trademark snark—was less time than it took to watch 

Avengers: Endgame.

How Common is NTLMv1?

Despite the recommendation from Microsoft that organizations cease use of NTLM in favor

of the much more secure Kerberos authentication protocol, NTLM is still quite common in 

enterprise environments. While ExtraHop did not look at the ubiquity of NTLMv2, the less 

secure of the two versions, NTLMv1 is still in broad use.

According to network telemetry from Reveal(x), 34% of environments have at least 10 clients 

running NTLMv1, less than the number of organizations with the same number of devices 

running SMBv1 and LLMNR, but still a significant number for a protocol that has been 

deprecated for over a decade, with 23% of organizations having fifty or more clients using 

NTLMv1, while 19% have one hundred or more clients using the protocol for authentication.

The Risks of NTLM

Using NTLM for authentication exposes organizations to a number of risks. A skilled attacker

can easily intercept NTLM hashes that are equivalent to passwords or crack NTLMv1 

passwords offline. A successful exploit against NTLMv1 authentication can enable an 

attacker to launch machine-in-the-middle (MITM) attacks or take complete control of a 

domain.

Fig. 6 During an NTLM relay attack, the attacker acts as a machine-in-the-middle (MITM), receiving and then forwarding the 

NTLM messages [1]. The attacker then creates an authenticated session with the server [2]. With this technique, the attacker

only needs the NTLM hash to move laterally across the network or access sensitive information stored on servers.

In an MITM attack, malicious actors insert themselves between the client and the server, 

allowing them to intercept all data transmitted between those devices. If the 

communications are not encrypted, or the ciphers are weak, as in the case of NTLM, MITM 

attacks can result in compromised credentials, scrapped PII, stolen trade secrets, the 

injection of fake or manipulated data, and much more. In fact, recently patched flaws in 

current NTLM versions allow attackers to force a downgrade of the security features within 

the NTLM protocol. Attackers can then leverage stolen credentials to pivot between 

machines until they identify domain admin accounts that can be used for direct AD Server

access and a full domain takeover.

Plaintext Credentials over Hypertext 
Transfer Protocol (HTTP)
The Hypertext Transfer Protocol (HTTP) is almost certainly the most commonly known 

application protocol. Whether you know anything about networking or not, chances are 

you’ve seen it at the beginning of every web address you’ve ever visited. A distributed, 

collaborative, hypermedia information system, it allows users to communicate data on the 

World Wide Web. Alongside its sister protocol, HTML, it’s the foundation of the internet we 

know today.

In 1995, four years after the introduction of HTTP, it’s more secure version, HTTPS, arrived 

on the scene. This was in response to demand for companies to be able to process payment 

information over the internet—something that couldn’t be done over HTTP without blatantly

exposing payment card information. Unlike HTTP, HTTPS uses TLS to encrypt the 

communications between clients and servers, preventing people from intercepting and 

reading your data in flight. It also preserves the integrity of data, helping to prevent it from 

being broken or corrupted.

While HTTP has never been officially deprecated, in 2017, Google took a major step toward 

phasing out the use of insecure HTTP. In January of 2017, Google Chrome started marking all 

non-HTTPS websites as “insecure.” Since that time, any website that stores information such 

as login credentials, credit card information, or PII must use HTTPS in order to function 

effectively in Chrome. Google also gives search priority to HTTPS sites.

While HTTP is not inherently problematic, its use for transmission of sensitive data is 

definitely a major risk. When plaintext credentials are transmitted over HTTP, those 

credentials are left exposed, the internet equivalent of shouting passwords across a crowded 

room, making it trivial for anyone to intercept and steal those credentials.  

How Common is Plaintext over HTTP?

Detections data from ExtraHop Reveal(x) 360 shows that 81 of 100 enterprise environments 

still use insecure HTTP credentials:

In the Wild: Plaintext Credentials over HTTP

In March 2021, ExtraHop experts were working with a major metropolitan law enforcement 

agency when Reveal(x) encountered a “Credentials Sent over HTTP” detection. The detection 

showed that the device sending credentials was a law enforcement agency laptop. The 

hostname matched the naming scheme for agency laptops, the IP address was within agency

domain space, and the user associated with the laptop was a law enforcement officer with 

the agency.

The security team then pivoted to look at the target of the HTTP credentials, which 

happened to be an internet address. Looking at related records, the team identified the 

address as the domain for a common law enforcement research forum that’s also available to 

the general public. The domain was HTTP, not HTTPS.

Even more concerning was the fact that the officer was accessing a portion of the site for

verified members (typically law enforcement agents and other investigators) that requires a 

login. Because the domain was HTTP and not HTTPS, usernames and passwords were both 

sent in the clear, making it easy for malicious actors to find and steal those credentials 

directly from the web.

Further investigation found that the site in question had a proper SSL certificate and had SSL

enabled. The site was just not configured to make encryption mandatory, potentially

exposing the login credentials of thousands of law enforcement officers and other

investigators who are verified site users.

The Risks of Plaintext Credentials over HTTP

As illustrated in the example above, sending plaintext credentials over HTTP exposes users 

and the organizations for which they work to a number of risks. In addition to credentials, 

HTTP websites can easily expose sensitive customer data such as credit card information 

and PII. 

Of course, even HTTPS isn’t foolproof. Heartbleed, a serious vulnerability in OpenSSL that

first came to light in 2014, is a classic example of how HTTPS can be exploited. Under

normal conditions, SSL/TLS encryption protects information—such as logins and credit card 

numbers—being transmitted over the internet. The Heartbleed vulnerability inadvertently

exposed the memory of systems protected by OpenSSL, compromising the secret keys used 

to encrypt the traffic and giving attackers access to users names, passwords, and other

sensitive information.

Because HTTP or HTTPS are often used to transmit user input from websites and web 

applications, the protocols are sometimes abused to transmit malicious content from the 

public internet into a private environment. For example, an attacker using the SQL injection 

tactic sends SQL statements hidden in HTTP headers or other user-manipulatable fields in 

the HTTP protocol. The encryption used by HTTPS can actually make it more challenging to 

detect SQL injection attacks.

Even with vulnerabilities like Heartbleed, HTTPS is still far more secure than HTTP for

transmission of sensitive information.

A Note on TLS 1.0/1.1
Recently IETF announced the formal deprecation of the TLS protocol version 1.0 and 1.1. In 

the coming months, ExtraHop will carefully monitor the ongoing use of these protocol 

versions across enterprise environments to understand how and if it is being phased out.

How to Determine Whether You’re 
Running Insecure Protocols
There are many ways you can end up running insecure or deprecated protocols or protocol 

versions in your environment, but only a few ways to find them and get them out.

When it comes to the introduction of insecure protocols, the "tyranny of default" is often to 

blame. Devices and software that communicate across the network are configured with 

default settings that may go out of date over time. If a new device or solution is introduced 

into the environment, but left to its default configuration, it may run protocols that are no 

longer considered secure.

Similarly, cloud systems and workloads use configuration templates to determine their

protocol usage, and over time, as new protocols are developed and old versions deprecated, 

these configuration templates may go out of date and need to be updated. Any new

workloads created with an older template may introduce insecure protocols into the environ-

ment. Because of the often short-lived and ephemeral nature of cloud workloads, it can be 

very challenging to catch these instances of insecure protocol usage and know how to get

them out of your system. 

So, how do you do it?

Manual, Point-in-Time Audit

Maintaining an inventory of software and hardware in your environment is a fundamental 

necessity for security hygiene, and is recommended in the first and second security controls 

in the CIS Top 20. Despite being a vital security practice, maintaining this inventory is a 

challenge for many organizations. One way to gather such an inventory is through a manual 

audit using a combination of scanning tools, ranging from the free, open source tool Nmap to 

costlier commercial products.

While scanning the network for devices and protocols in use can provide a valuable snapshot 

of a point in time, it doesn't protect you against new occurrences of insecure protocols. 

Neither does a point-in-time scan offer any guarantee that you've discovered every instance 

of an insecure protocol actively in use. Particularly in a large and heavily segmented network, 

scanning tools may simply not uncover what you're looking for. As one security analyst once 

remarked, “The network is dark and full of terrors.”

So how do you find insecure protocols in an enterprise-scale network?

Continuous Network Monitoring

By passively monitoring and analyzing network traffic continuously, you can discover each 

protocol that is in use on the network at any given moment. This addresses two of the 

primary challenges:

1. Manual audits only give you a point-in-time snapshot. There are many well-docu-

mented ways for insecure protocols to be reintroduced to your environment between 

audits, which are usually conducted quarterly at best.

2. Manual audits are extremely time- and energy-consuming, taking away time from 

other more critical security functions like responding to actual threats.

With the increase in remote and distributed workforces and hybrid environments with both 

on-premises and cloud components, the number of ways that insecure protocols may be 

introduced into your environment have multiplied at the same time that maintaining an 

accurate inventory has grown massively more difficult. Continuous monitoring of network 

traffic for protocol identification and threat detection and response has gone from a 

nice-to-have to a must-have.

LLMNR Broadcast

Learn how the 
SolarWinds 
SUNBURST 
attackers used 
DNS



What’s in a Protocol?
Protocols are the lingua franca of the network, allowing connected devices to communicate 

with each other regardless of differences in operating systems, hardware, and processes. 

Protocols work by establishing a set of rules for how data is transmitted between different

network devices, and include everything from how that data is protected (encryption) to how

domains are resolved. While protocols for network communication can be updated and 

refined, and new ones can be created, many protocols in common use today have been 

around for decades.

Different protocols are used in different ways, both by IT teams and malicious actors. For

example, the Domain Name System (DNS) protocol makes navigating the internet easier for

users by mapping IP addresses to human readable domain names, but is frequently misused 

by attackers for malicious purposes such as command and control (C2) and data exfiltration.

You can learn more about protocols and threat activities associated with them by visiting the 

ExtraHop Network Protocol Library.

This report focuses specifically on four of those protocols: SMBv1, LLMNR, NTLM, and HTTP, 

the prevalence of these protocols within enterprise IT environments, and the risks associated 

with each.

Server Message Block (SMB) v1
Server Message Block (SMB) is a protocol that was developed in the 1980s and is used 

primarily for sharing things like files, printer services, and communication between networked 

devices. During the 1980s and 1990s, Microsoft attempted to rebrand SMBv1 under the 

name Common Internet File System (CIFS) and expanded its capabilities to include the 

transmission of large files and the establishment of direct connections over port 445.

As it turned out, SMBv1 (CIFS) was notoriously buggy, chatty, and difficult to use, and had 

major security deficiencies. When Microsoft introduced SMBv2 in 2006 they abandoned the 

CIFS nomenclature altogether. Six years later, in 2012, Microsoft introduced SMBv3, and in 

2013 the company officially deprecated SMBv1.

Despite the deprecation, Microsoft continued to install SMBv1 on its Windows Servers until 

2016. By that time, Microsoft was actively urging the Microsoft user community to stop using 

SMBv1, but with millions of machines using the protocol, many of the warnings, including 

those from within the Windows Server engineering group, went unheeded. This is why, when 

EternalBlue and related exploits—known collectively as Eternal(x)—came to light in 2017, 

SMBv1 was still pervasive in IT environments around the world. The Eternal(x) vulnerabilities 

exploit a buffer overflow vulnerability in SMBv1.

How Common is SMBv1?
Based on research conducted by ExtraHop in the first three months of 2021, 88% of

environments have at least one device running SMBv1. While that might seem like a staggering 

number, the good news is that in the cases where it’s just one device, this is probably

intentional. Red teams still use SMBv1 as a tool in penetration testing exercises, which 

probably accounts for those environments with just one instance.

The problem is that 67% of environments have at least 10 devices running SMBv1 and that’s 

likely not intentional. While 10 devices might seem like a relatively small number, the remote 

code execution enabled by Eternal(x) exploits makes any device running SMBv1 an easy pivot 

point from which to launch a large-scale attack. These 10 devices might be a tiny fraction of

the assets in an environment, but defense is a zero-fail mission. SMBv1 doesn’t need to be 

installed on every device in the environment to be used to launch a catastrophic attack. It only

needs to be on one.

The numbers only get scarier from there. According to ExtraHop data, 37% of environments 

have at least 50 devices running SMBv1, and 31% of environments have 100 or more 

devices still using the protocol four years after WannaCry and NotPetya rocked the world.

In the Wild: SMBv1
A High Stakes Gamble

In early 2019, almost two years after the EternalBlue vulnerability came to light, ExtraHop 

was working with a branch of a US Federal Agency. The agency was aware that it still had 

machines running SMBv1. What they didn’t know was which machines, or how many.

Their challenge was two-fold. First, the reason they were still running SMBv1 is because so 

many of their legacy systems used the protocol. Getting rid of it was a massive logistical 

undertaking, as many of their systems still ran on Windows XP, which couldn’t use later

versions of the protocol. However, they’d recently been advised by their NAS vendor that 

the vendor was going to stop supporting the SMBv1 protocol.

Second, while they had continued using SMBv1 long after its vulnerabilities (and the damage 

that could be wrought through their exploitation) had come to light, they were well aware of

the risks associated with the protocol. 

The security team at the agency used their SMB/CIFS Dashboard in Reveal(x) to pull up all 

devices running SMBv1. They quickly found that they still had a large number of devices 

using the protocol, including their entire VDI deployment. This protocol exposed the branch 

of the agency to huge risk of a fast-moving ransomware attack, among other things.

While the transition away from SMBv1 took effort, the move ultimately meant a more secure 

environment for the agency. Unfortunately, the ongoing use of legacy systems that don’t 

support later versions of the SMB protocol are a major reason that many organizations 

remain exposed to Eternal(x) exploitation.

A Brush with Ransomware Four Years After WannaCry

In March 2021, news broke that Taiwanese computing giant Acer had been severely

compromised by ransomware. The $50 million ransom demand was the largest in history, 

and REvil, the cybercriminals responsible for the attack, had architected a trump card. Not

only had their attack encrypted a large percentage of the company’s files, they had also 

exfiltrated huge quantities of data. In the event Acer had a back-up, they could still extract 

the ransom by threatening to leak the stolen data.

The exfiltrate-then-encrypt play is becoming increasingly common in ransomware attacks as 

cybercriminals try to maximize their leverage. Just a few months before the disclosure of the 

Acer attack, an ExtraHop customer experienced a very similar attack.

In late 2020, a large ExtraHop customer based in North America was alerted to a 

Ransomware Activity detection in Reveal(x) 360. The same devices were also seeing alerts 

for detections on SMB data staging and suspicious file reads. By looking at Related 

Detections, the customer’s security team determined that the attackers were also in the 

process of exfiltrating data before they encrypted it in an effort to inflict maximum damage.

The team was able to quickly identify and quarantine affected assets and accounts, and as a 

result, the attackers were only able to encrypt a small percentage of targeted files.

While the customer averted disaster in this case, it serves as a cautionary tale, not only

about the new ransomware playbook, but about the ongoing risks associated with SMBv1. 

Devices running this protocol remain an easy target for attackers, especially ransomware 

gangs more interested in money than in information.

You can read more about this ransomware trend here. 

The Risks of SMBv1

The reason that SMBv1 has been so successfully exploited for attacks like WannaCry and 

NotPetya is that, if an attacker can successfully access a server with SMBv1 enabled, they

can quickly spread malware to other unpatched servers across a network. In an 

SMBv1-based attack, the attacker sends multiple requests, or messages, to a file server over

SMBv1. Each SMBv1 message is specially designed to manipulate the file server memory in a 

way that eventually causes a buffer overflow, which enables the attacker to deliver a 

malicious payload, such as ransomware, to the kernel of the server.

Buffer Overflow attacks of system level services are particularly dangerous because they

provide attackers with a wide latitude for follow-on activities such as injecting malicious 

payloads, scraping user credentials from memory, and setting up hidden persistence 

mechanisms that reside only in memory.

Link-Local Multicast Name Resolution (LLMNR)
Link-Local Multicast Name Resolution (LLMNR) is a protocol that allows name resolution 

without a DNS server. Essentially, LLMNR is a layer 2 protocol that provides a hostname-to-IP

resolution on the basis of a network packet that’s transmitted via Port UDP 5355 to the 

multicast network address (224.0.0.0 through 239.255.255.255). The multicast packet queries 

all network interfaces looking for any that can self-identify authoritatively as the hostname in 

the query.

LLMNR is distinct from other protocols described in this report, in that it was never adopted as 

an IETF standard protocol (although it was defined in RFC 4795).

LLMNR was originally created as a workaround to enable name resolution in environments in 

which DNS servers would be impractical, such as small private networks. LLMNR was created 

as a way to achieve name resolution without the onerous requirements of DNS. The protocol 

has been (and still is) used by operating systems, including Microsoft Windows, to identify

networked devices like file servers.

How Common is LLMNR?
For a protocol that’s not quite a protocol—and a very risky one at that—it’s usage is still 

surprisingly common. De-identified network telemetry from ExtraHop Reveal(x) shows that 

70% of enterprise environments have at least 10 clients still running LLMNR. Unfortunately, as 

the device counts go up, the number of environments with vulnerable clients doesn’t decline 

by much. Fifty-five percent of environments have fifty or more LLMNR clients, while 46% have 

more than 100 such clients.

The Risks of LLMNR
While LLMNR provides a DNS-free mechanism for host-name resolution within a local 

environment, it also provides an avenue of attack for malicious actors. An attacker can use the 

protocol to trick a victim into revealing user credentials. This is done by leveraging LLMNR to 

gain access to the user credential hashes, which can then be cracked to reveal actual 

credentials, especially if older MS password techniques like LANMAN are not disabled.

How does this work if you’re the attacker? The first step is to configure a node on the network 

to answer that it is the hostname associated with any query. For the requesting client, this 

creates a race condition in which the client will not only accept, but trust whichever device 

answers first. This is because the protocol specifications of LLMNR state that all client

responses are trustworthy.

This is when credential hashes come into play. When the client receives a definitive “It’s me!”

from a compromised device, it automatically sends a hashed copy of the current user's 

credentials as part of the response. This provides the attacker with a hashed copy of the 

credentials which can be decrypted, or leveraged via pass-the-hash attacks to begin 

escalating privileges within the broader network.

While DNS is not without its challenges, it’s a far more secure way to accurately identify host

names. With that said, DNS should be carefully monitored to ensure that it is not itself being

utilized for nefarious purposes. 

Fig. 4 When a DNS request for a hostname cannot be resolved or a DNS server is unavailable (1), clients with LLMNR enabled 

will broadcast a query to all local devices over UDP 5355 (2). If an attacker is listening, they can respond and impersonate the 

requested host (3). If the host is an authenticated resource, the client response will contain user credentials. 

New Technology LAN Manager (NTLM) v1
New Technology LAN Manager (NTLM) is a proprietary Microsoft protocol introduced in 

1993 to replace Microsoft LAN Manager (LANMAN). NTLM is part of a cohort of Microsoft 

security protocols designed to collectively provide authentication, integrity, and 

confidentiality to users.

NTLM is what is known as a challenge-response protocol used by servers to authenticate 

clients using password hashes. In its original incarnation NTLMv1, used a fairly simple (and 

easily compromised) authentication method. The process by which NTLM authenticates 

users is described by Microsoft below:

NTLM credentials are based on data obtained during the interactive logon process and 
consist of a domain name, a user name, and a one-way hash of the user's password. 
NTLM uses an encrypted challenge/response protocol to authenticate a user without 
sending the user's password over the wire. Instead, the system requesting 
authentication must perform a calculation that proves it has access to the secured 
NTLM credentials.

While NTLMv1 was eventually replaced by NTLMv2, the next generation of the protocol 

didn’t fare much better when it came to actually protecting passwords from being 

intercepted by malicious actors. NTLMv2 added a few features, including a time stamp and a 

usernames appended to the hash. While this helps mitigate offline relay attacks, it introduced 

other vulnerabilities and did little to improve the overall security of the protocol.

The problem with this cryptography scheme is that it’s incredibly easy to crack. In 2012, it 

was demonstrated that every possible permutation of NTLM’s eight-byte hash could be 

cracked in under six hours. In 2019, an open-source password recovery tool known as 

HashCat demonstrated that it could crack any eight-byte hash in under two and a half hours, 

a fact the The Register noted—with its trademark snark—was less time than it took to watch 

Avengers: Endgame.

How Common is NTLMv1?

Despite the recommendation from Microsoft that organizations cease use of NTLM in favor 

of the much more secure Kerberos authentication protocol, NTLM is still quite common in 

enterprise environments. While ExtraHop did not look at the ubiquity of NTLMv2, the less 

secure of the two versions, NTLMv1 is still in broad use.

According to network telemetry from Reveal(x), 34% of environments have at least 10 clients 

running NTLMv1, less than the number of organizations with the same number of devices 

running SMBv1 and LLMNR, but still a significant number for a protocol that has been 

deprecated for over a decade, with 23% of organizations having fifty or more clients using 

NTLMv1, while 19% have one hundred or more clients using the protocol for authentication.

The Risks of NTLM

Using NTLM for authentication exposes organizations to a number of risks. A skilled attacker

can easily intercept NTLM hashes that are equivalent to passwords or crack NTLMv1 

passwords offline. A successful exploit against NTLMv1 authentication can enable an 

attacker to launch machine-in-the-middle (MITM) attacks or take complete control of a 

domain.

Fig. 6 During an NTLM relay attack, the attacker acts as a machine-in-the-middle (MITM), receiving and then forwarding the 

NTLM messages [1]. The attacker then creates an authenticated session with the server [2]. With this technique, the attacker

only needs the NTLM hash to move laterally across the network or access sensitive information stored on servers.

In an MITM attack, malicious actors insert themselves between the client and the server, 

allowing them to intercept all data transmitted between those devices. If the 

communications are not encrypted, or the ciphers are weak, as in the case of NTLM, MITM 

attacks can result in compromised credentials, scrapped PII, stolen trade secrets, the 

injection of fake or manipulated data, and much more. In fact, recently patched flaws in 

current NTLM versions allow attackers to force a downgrade of the security features within 

the NTLM protocol. Attackers can then leverage stolen credentials to pivot between 

machines until they identify domain admin accounts that can be used for direct AD Server

access and a full domain takeover.

Plaintext Credentials over Hypertext 
Transfer Protocol (HTTP)
The Hypertext Transfer Protocol (HTTP) is almost certainly the most commonly known 

application protocol. Whether you know anything about networking or not, chances are 

you’ve seen it at the beginning of every web address you’ve ever visited. A distributed, 

collaborative, hypermedia information system, it allows users to communicate data on the 

World Wide Web. Alongside its sister protocol, HTML, it’s the foundation of the internet we 

know today.

In 1995, four years after the introduction of HTTP, it’s more secure version, HTTPS, arrived 

on the scene. This was in response to demand for companies to be able to process payment 

information over the internet—something that couldn’t be done over HTTP without blatantly

exposing payment card information. Unlike HTTP, HTTPS uses TLS to encrypt the 

communications between clients and servers, preventing people from intercepting and 

reading your data in flight. It also preserves the integrity of data, helping to prevent it from 

being broken or corrupted.

While HTTP has never been officially deprecated, in 2017, Google took a major step toward 

phasing out the use of insecure HTTP. In January of 2017, Google Chrome started marking all 

non-HTTPS websites as “insecure.” Since that time, any website that stores information such 

as login credentials, credit card information, or PII must use HTTPS in order to function 

effectively in Chrome. Google also gives search priority to HTTPS sites.

While HTTP is not inherently problematic, its use for transmission of sensitive data is 

definitely a major risk. When plaintext credentials are transmitted over HTTP, those 

credentials are left exposed, the internet equivalent of shouting passwords across a crowded 

room, making it trivial for anyone to intercept and steal those credentials.  

How Common is Plaintext over HTTP?

Detections data from ExtraHop Reveal(x) 360 shows that 81 of 100 enterprise environments 

still use insecure HTTP credentials:

In the Wild: Plaintext Credentials over HTTP

In March 2021, ExtraHop experts were working with a major metropolitan law enforcement 

agency when Reveal(x) encountered a “Credentials Sent over HTTP” detection. The detection 

showed that the device sending credentials was a law enforcement agency laptop. The 

hostname matched the naming scheme for agency laptops, the IP address was within agency

domain space, and the user associated with the laptop was a law enforcement officer with 

the agency.

The security team then pivoted to look at the target of the HTTP credentials, which 

happened to be an internet address. Looking at related records, the team identified the 

address as the domain for a common law enforcement research forum that’s also available to 

the general public. The domain was HTTP, not HTTPS.

Even more concerning was the fact that the officer was accessing a portion of the site for

verified members (typically law enforcement agents and other investigators) that requires a 

login. Because the domain was HTTP and not HTTPS, usernames and passwords were both 

sent in the clear, making it easy for malicious actors to find and steal those credentials 

directly from the web.

Further investigation found that the site in question had a proper SSL certificate and had SSL

enabled. The site was just not configured to make encryption mandatory, potentially

exposing the login credentials of thousands of law enforcement officers and other

investigators who are verified site users.

The Risks of Plaintext Credentials over HTTP

As illustrated in the example above, sending plaintext credentials over HTTP exposes users 

and the organizations for which they work to a number of risks. In addition to credentials, 

HTTP websites can easily expose sensitive customer data such as credit card information 

and PII. 

Of course, even HTTPS isn’t foolproof. Heartbleed, a serious vulnerability in OpenSSL that

first came to light in 2014, is a classic example of how HTTPS can be exploited. Under

normal conditions, SSL/TLS encryption protects information—such as logins and credit card 

numbers—being transmitted over the internet. The Heartbleed vulnerability inadvertently

exposed the memory of systems protected by OpenSSL, compromising the secret keys used 

to encrypt the traffic and giving attackers access to users names, passwords, and other

sensitive information.

Because HTTP or HTTPS are often used to transmit user input from websites and web 

applications, the protocols are sometimes abused to transmit malicious content from the 

public internet into a private environment. For example, an attacker using the SQL injection 

tactic sends SQL statements hidden in HTTP headers or other user-manipulatable fields in 

the HTTP protocol. The encryption used by HTTPS can actually make it more challenging to 

detect SQL injection attacks.

Even with vulnerabilities like Heartbleed, HTTPS is still far more secure than HTTP for

transmission of sensitive information.

A Note on TLS 1.0/1.1
Recently IETF announced the formal deprecation of the TLS protocol version 1.0 and 1.1. In 

the coming months, ExtraHop will carefully monitor the ongoing use of these protocol 

versions across enterprise environments to understand how and if it is being phased out.

INSECURE PROTOCOL USAGE EXPOSES ORGANIZATIONS TO CYBERSECURITY RISK  |   SECURITY ADVISORY    10

How to Determine Whether You’re 
Running Insecure Protocols
There are many ways you can end up running insecure or deprecated protocols or protocol 

versions in your environment, but only a few ways to find them and get them out.

When it comes to the introduction of insecure protocols, the "tyranny of default" is often to 

blame. Devices and software that communicate across the network are configured with 

default settings that may go out of date over time. If a new device or solution is introduced 

into the environment, but left to its default configuration, it may run protocols that are no 

longer considered secure.

Similarly, cloud systems and workloads use configuration templates to determine their

protocol usage, and over time, as new protocols are developed and old versions deprecated, 

these configuration templates may go out of date and need to be updated. Any new

workloads created with an older template may introduce insecure protocols into the environ-

ment. Because of the often short-lived and ephemeral nature of cloud workloads, it can be 

very challenging to catch these instances of insecure protocol usage and know how to get

them out of your system. 

So, how do you do it?

Manual, Point-in-Time Audit

Maintaining an inventory of software and hardware in your environment is a fundamental 

necessity for security hygiene, and is recommended in the first and second security controls 

in the CIS Top 20. Despite being a vital security practice, maintaining this inventory is a 

challenge for many organizations. One way to gather such an inventory is through a manual 

audit using a combination of scanning tools, ranging from the free, open source tool Nmap to 

costlier commercial products.

While scanning the network for devices and protocols in use can provide a valuable snapshot 

of a point in time, it doesn't protect you against new occurrences of insecure protocols. 

Neither does a point-in-time scan offer any guarantee that you've discovered every instance 

of an insecure protocol actively in use. Particularly in a large and heavily segmented network, 

scanning tools may simply not uncover what you're looking for. As one security analyst once 

remarked, “The network is dark and full of terrors.”

So how do you find insecure protocols in an enterprise-scale network?

Continuous Network Monitoring

By passively monitoring and analyzing network traffic continuously, you can discover each 

protocol that is in use on the network at any given moment. This addresses two of the 

primary challenges:

1. Manual audits only give you a point-in-time snapshot. There are many well-docu-

mented ways for insecure protocols to be reintroduced to your environment between 

audits, which are usually conducted quarterly at best.

2. Manual audits are extremely time- and energy-consuming, taking away time from 

other more critical security functions like responding to actual threats.

With the increase in remote and distributed workforces and hybrid environments with both 

on-premises and cloud components, the number of ways that insecure protocols may be 

introduced into your environment have multiplied at the same time that maintaining an 

accurate inventory has grown massively more difficult. Continuous monitoring of network 

traffic for protocol identification and threat detection and response has gone from a 

nice-to-have to a must-have.

INTRODUCED

DEPRECATED

DAMAGES

1993

2010

Unknown

NTLMv1
34% of 
environments 
use NTLMv1 
in 2021

≥10 Devices 

Environments with devices running NTLMv1

≥50 Devices 23%

≥100 Devices 19%

Fig. 5 This chart shows the prevalence of devices running LLMNR across environments. 

34%

https://www.theregister.com/2019/02/14/password_length/


What’s in a Protocol?
Protocols are the lingua franca of the network, allowing connected devices to communicate 

with each other regardless of differences in operating systems, hardware, and processes. 

Protocols work by establishing a set of rules for how data is transmitted between different

network devices, and include everything from how that data is protected (encryption) to how

domains are resolved. While protocols for network communication can be updated and 

refined, and new ones can be created, many protocols in common use today have been 

around for decades.

Different protocols are used in different ways, both by IT teams and malicious actors. For

example, the Domain Name System (DNS) protocol makes navigating the internet easier for

users by mapping IP addresses to human readable domain names, but is frequently misused 

by attackers for malicious purposes such as command and control (C2) and data exfiltration.

You can learn more about protocols and threat activities associated with them by visiting the 

ExtraHop Network Protocol Library.

This report focuses specifically on four of those protocols: SMBv1, LLMNR, NTLM, and HTTP, 

the prevalence of these protocols within enterprise IT environments, and the risks associated 

with each.

Server Message Block (SMB) v1
Server Message Block (SMB) is a protocol that was developed in the 1980s and is used 

primarily for sharing things like files, printer services, and communication between networked 

devices. During the 1980s and 1990s, Microsoft attempted to rebrand SMBv1 under the 

name Common Internet File System (CIFS) and expanded its capabilities to include the 

transmission of large files and the establishment of direct connections over port 445.

As it turned out, SMBv1 (CIFS) was notoriously buggy, chatty, and difficult to use, and had 

major security deficiencies. When Microsoft introduced SMBv2 in 2006 they abandoned the 

CIFS nomenclature altogether. Six years later, in 2012, Microsoft introduced SMBv3, and in 

2013 the company officially deprecated SMBv1.

Despite the deprecation, Microsoft continued to install SMBv1 on its Windows Servers until 

2016. By that time, Microsoft was actively urging the Microsoft user community to stop using 

SMBv1, but with millions of machines using the protocol, many of the warnings, including 

those from within the Windows Server engineering group, went unheeded. This is why, when 

EternalBlue and related exploits—known collectively as Eternal(x)—came to light in 2017, 

SMBv1 was still pervasive in IT environments around the world. The Eternal(x) vulnerabilities 

exploit a buffer overflow vulnerability in SMBv1.

How Common is SMBv1?
Based on research conducted by ExtraHop in the first three months of 2021, 88% of

environments have at least one device running SMBv1. While that might seem like a staggering 

number, the good news is that in the cases where it’s just one device, this is probably

intentional. Red teams still use SMBv1 as a tool in penetration testing exercises, which 

probably accounts for those environments with just one instance.

The problem is that 67% of environments have at least 10 devices running SMBv1 and that’s 

likely not intentional. While 10 devices might seem like a relatively small number, the remote 

code execution enabled by Eternal(x) exploits makes any device running SMBv1 an easy pivot 

point from which to launch a large-scale attack. These 10 devices might be a tiny fraction of

the assets in an environment, but defense is a zero-fail mission. SMBv1 doesn’t need to be 

installed on every device in the environment to be used to launch a catastrophic attack. It only

needs to be on one.

The numbers only get scarier from there. According to ExtraHop data, 37% of environments 

have at least 50 devices running SMBv1, and 31% of environments have 100 or more 

devices still using the protocol four years after WannaCry and NotPetya rocked the world.

In the Wild: SMBv1
A High Stakes Gamble

In early 2019, almost two years after the EternalBlue vulnerability came to light, ExtraHop 

was working with a branch of a US Federal Agency. The agency was aware that it still had 

machines running SMBv1. What they didn’t know was which machines, or how many.

Their challenge was two-fold. First, the reason they were still running SMBv1 is because so 

many of their legacy systems used the protocol. Getting rid of it was a massive logistical 

undertaking, as many of their systems still ran on Windows XP, which couldn’t use later

versions of the protocol. However, they’d recently been advised by their NAS vendor that 

the vendor was going to stop supporting the SMBv1 protocol.

Second, while they had continued using SMBv1 long after its vulnerabilities (and the damage 

that could be wrought through their exploitation) had come to light, they were well aware of

the risks associated with the protocol. 

The security team at the agency used their SMB/CIFS Dashboard in Reveal(x) to pull up all 

devices running SMBv1. They quickly found that they still had a large number of devices 

using the protocol, including their entire VDI deployment. This protocol exposed the branch 

of the agency to huge risk of a fast-moving ransomware attack, among other things.

While the transition away from SMBv1 took effort, the move ultimately meant a more secure 

environment for the agency. Unfortunately, the ongoing use of legacy systems that don’t 

support later versions of the SMB protocol are a major reason that many organizations 

remain exposed to Eternal(x) exploitation.

A Brush with Ransomware Four Years After WannaCry

In March 2021, news broke that Taiwanese computing giant Acer had been severely

compromised by ransomware. The $50 million ransom demand was the largest in history, 

and REvil, the cybercriminals responsible for the attack, had architected a trump card. Not

only had their attack encrypted a large percentage of the company’s files, they had also 

exfiltrated huge quantities of data. In the event Acer had a back-up, they could still extract 

the ransom by threatening to leak the stolen data.

The exfiltrate-then-encrypt play is becoming increasingly common in ransomware attacks as 

cybercriminals try to maximize their leverage. Just a few months before the disclosure of the 

Acer attack, an ExtraHop customer experienced a very similar attack.

In late 2020, a large ExtraHop customer based in North America was alerted to a 

Ransomware Activity detection in Reveal(x) 360. The same devices were also seeing alerts 

for detections on SMB data staging and suspicious file reads. By looking at Related 

Detections, the customer’s security team determined that the attackers were also in the 

process of exfiltrating data before they encrypted it in an effort to inflict maximum damage.

The team was able to quickly identify and quarantine affected assets and accounts, and as a 

result, the attackers were only able to encrypt a small percentage of targeted files.

While the customer averted disaster in this case, it serves as a cautionary tale, not only

about the new ransomware playbook, but about the ongoing risks associated with SMBv1. 

Devices running this protocol remain an easy target for attackers, especially ransomware 

gangs more interested in money than in information.

You can read more about this ransomware trend here. 

The Risks of SMBv1

The reason that SMBv1 has been so successfully exploited for attacks like WannaCry and 

NotPetya is that, if an attacker can successfully access a server with SMBv1 enabled, they

can quickly spread malware to other unpatched servers across a network. In an 

SMBv1-based attack, the attacker sends multiple requests, or messages, to a file server over

SMBv1. Each SMBv1 message is specially designed to manipulate the file server memory in a 

way that eventually causes a buffer overflow, which enables the attacker to deliver a 

malicious payload, such as ransomware, to the kernel of the server.

Buffer Overflow attacks of system level services are particularly dangerous because they

provide attackers with a wide latitude for follow-on activities such as injecting malicious 

payloads, scraping user credentials from memory, and setting up hidden persistence 

mechanisms that reside only in memory.

Link-Local Multicast Name Resolution (LLMNR)
Link-Local Multicast Name Resolution (LLMNR) is a protocol that allows name resolution 

without a DNS server. Essentially, LLMNR is a layer 2 protocol that provides a hostname-to-IP

resolution on the basis of a network packet that’s transmitted via Port UDP 5355 to the 

multicast network address (224.0.0.0 through 239.255.255.255). The multicast packet queries 

all network interfaces looking for any that can self-identify authoritatively as the hostname in 

the query.

LLMNR is distinct from other protocols described in this report, in that it was never adopted as 

an IETF standard protocol (although it was defined in RFC 4795).

LLMNR was originally created as a workaround to enable name resolution in environments in 

which DNS servers would be impractical, such as small private networks. LLMNR was created 

as a way to achieve name resolution without the onerous requirements of DNS. The protocol 

has been (and still is) used by operating systems, including Microsoft Windows, to identify

networked devices like file servers.

How Common is LLMNR?
For a protocol that’s not quite a protocol—and a very risky one at that—it’s usage is still 

surprisingly common. De-identified network telemetry from ExtraHop Reveal(x) shows that 

70% of enterprise environments have at least 10 clients still running LLMNR. Unfortunately, as 

the device counts go up, the number of environments with vulnerable clients doesn’t decline 

by much. Fifty-five percent of environments have fifty or more LLMNR clients, while 46% have 

more than 100 such clients.

The Risks of LLMNR
While LLMNR provides a DNS-free mechanism for host-name resolution within a local 

environment, it also provides an avenue of attack for malicious actors. An attacker can use the 

protocol to trick a victim into revealing user credentials. This is done by leveraging LLMNR to 

gain access to the user credential hashes, which can then be cracked to reveal actual 

credentials, especially if older MS password techniques like LANMAN are not disabled.

How does this work if you’re the attacker? The first step is to configure a node on the network 

to answer that it is the hostname associated with any query. For the requesting client, this 

creates a race condition in which the client will not only accept, but trust whichever device 

answers first. This is because the protocol specifications of LLMNR state that all client

responses are trustworthy.

This is when credential hashes come into play. When the client receives a definitive “It’s me!”

from a compromised device, it automatically sends a hashed copy of the current user's 

credentials as part of the response. This provides the attacker with a hashed copy of the 

credentials which can be decrypted, or leveraged via pass-the-hash attacks to begin 

escalating privileges within the broader network.

While DNS is not without its challenges, it’s a far more secure way to accurately identify host

names. With that said, DNS should be carefully monitored to ensure that it is not itself being

utilized for nefarious purposes. 

Fig. 4 When a DNS request for a hostname cannot be resolved or a DNS server is unavailable (1), clients with LLMNR enabled 

will broadcast a query to all local devices over UDP 5355 (2). If an attacker is listening, they can respond and impersonate the 

requested host (3). If the host is an authenticated resource, the client response will contain user credentials. 

New Technology LAN Manager (NTLM) v1
New Technology LAN Manager (NTLM) is a proprietary Microsoft protocol introduced in 

1993 to replace Microsoft LAN Manager (LANMAN). NTLM is part of a cohort of Microsoft 

security protocols designed to collectively provide authentication, integrity, and 

confidentiality to users.

NTLM is what is known as a challenge-response protocol used by servers to authenticate 

clients using password hashes. In its original incarnation NTLMv1, used a fairly simple (and 

easily compromised) authentication method. The process by which NTLM authenticates 

users is described by Microsoft below:

NTLM credentials are based on data obtained during the interactive logon process and 
consist of a domain name, a user name, and a one-way hash of the user's password. 
NTLM uses an encrypted challenge/response protocol to authenticate a user without 
sending the user's password over the wire. Instead, the system requesting 
authentication must perform a calculation that proves it has access to the secured 
NTLM credentials.

While NTLMv1 was eventually replaced by NTLMv2, the next generation of the protocol 

didn’t fare much better when it came to actually protecting passwords from being 

intercepted by malicious actors. NTLMv2 added a few features, including a time stamp and a 

usernames appended to the hash. While this helps mitigate offline relay attacks, it introduced 

other vulnerabilities and did little to improve the overall security of the protocol.

The problem with this cryptography scheme is that it’s incredibly easy to crack. In 2012, it 

was demonstrated that every possible permutation of NTLM’s eight-byte hash could be 

cracked in under six hours. In 2019, an open-source password recovery tool known as 

HashCat demonstrated that it could crack any eight-byte hash in under two and a half hours, 

a fact the The Register noted—with its trademark snark—was less time than it took to watch 

Avengers: Endgame.

How Common is NTLMv1?

Despite the recommendation from Microsoft that organizations cease use of NTLM in favor

of the much more secure Kerberos authentication protocol, NTLM is still quite common in 

enterprise environments. While ExtraHop did not look at the ubiquity of NTLMv2, the less 

secure of the two versions, NTLMv1 is still in broad use.

According to network telemetry from Reveal(x), 34% of environments have at least 10 clients 

running NTLMv1, less than the number of organizations with the same number of devices 

running SMBv1 and LLMNR, but still a significant number for a protocol that has been 

deprecated for over a decade, with 23% of organizations having fifty or more clients using 

NTLMv1, while 19% have one hundred or more clients using the protocol for authentication.

The Risks of NTLM

Using NTLM for authentication exposes organizations to a number of risks. A skilled attacker 

can easily intercept NTLM hashes that are equivalent to passwords or crack NTLMv1 

passwords offline. A successful exploit against NTLMv1 authentication can enable an 

attacker to launch machine-in-the-middle (MITM) attacks or take complete control of a 

domain.

Fig. 6 During an NTLM relay attack, the attacker acts as a machine-in-the-middle (MITM), receiving and then forwarding the 

NTLM messages [1]. The attacker then creates an authenticated session with the server [2]. With this technique, the attacker 

only needs the NTLM hash to move laterally across the network or access sensitive information stored on servers.

In an MITM attack, malicious actors insert themselves between the client and the server, 

allowing them to intercept all data transmitted between those devices. If the 

communications are not encrypted, or the ciphers are weak, as in the case of NTLM, MITM 

attacks can result in compromised credentials, scrapped PII, stolen trade secrets, the 

injection of fake or manipulated data, and much more. In fact, recently patched flaws in 

current NTLM versions allow attackers to force a downgrade of the security features within 

the NTLM protocol. Attackers can then leverage stolen credentials to pivot between 

machines until they identify domain admin accounts that can be used for direct AD Server 

access and a full domain takeover.

Plaintext Credentials over Hypertext 
Transfer Protocol (HTTP)
The Hypertext Transfer Protocol (HTTP) is almost certainly the most commonly known 

application protocol. Whether you know anything about networking or not, chances are 

you’ve seen it at the beginning of every web address you’ve ever visited. A distributed, 

collaborative, hypermedia information system, it allows users to communicate data on the 

World Wide Web. Alongside its sister protocol, HTML, it’s the foundation of the internet we 

know today.

In 1995, four years after the introduction of HTTP, it’s more secure version, HTTPS, arrived 

on the scene. This was in response to demand for companies to be able to process payment 

information over the internet—something that couldn’t be done over HTTP without blatantly

exposing payment card information. Unlike HTTP, HTTPS uses TLS to encrypt the 

communications between clients and servers, preventing people from intercepting and 

reading your data in flight. It also preserves the integrity of data, helping to prevent it from 

being broken or corrupted.

While HTTP has never been officially deprecated, in 2017, Google took a major step toward 

phasing out the use of insecure HTTP. In January of 2017, Google Chrome started marking all 

non-HTTPS websites as “insecure.” Since that time, any website that stores information such 

as login credentials, credit card information, or PII must use HTTPS in order to function 

effectively in Chrome. Google also gives search priority to HTTPS sites.

While HTTP is not inherently problematic, its use for transmission of sensitive data is 

definitely a major risk. When plaintext credentials are transmitted over HTTP, those 

credentials are left exposed, the internet equivalent of shouting passwords across a crowded 

room, making it trivial for anyone to intercept and steal those credentials.  

How Common is Plaintext over HTTP?

Detections data from ExtraHop Reveal(x) 360 shows that 81 of 100 enterprise environments 

still use insecure HTTP credentials:

In the Wild: Plaintext Credentials over HTTP

In March 2021, ExtraHop experts were working with a major metropolitan law enforcement 

agency when Reveal(x) encountered a “Credentials Sent over HTTP” detection. The detection 

showed that the device sending credentials was a law enforcement agency laptop. The 

hostname matched the naming scheme for agency laptops, the IP address was within agency

domain space, and the user associated with the laptop was a law enforcement officer with 

the agency.

The security team then pivoted to look at the target of the HTTP credentials, which 

happened to be an internet address. Looking at related records, the team identified the 

address as the domain for a common law enforcement research forum that’s also available to 

the general public. The domain was HTTP, not HTTPS.

Even more concerning was the fact that the officer was accessing a portion of the site for

verified members (typically law enforcement agents and other investigators) that requires a 

login. Because the domain was HTTP and not HTTPS, usernames and passwords were both 

sent in the clear, making it easy for malicious actors to find and steal those credentials 

directly from the web.

Further investigation found that the site in question had a proper SSL certificate and had SSL

enabled. The site was just not configured to make encryption mandatory, potentially

exposing the login credentials of thousands of law enforcement officers and other

investigators who are verified site users.

The Risks of Plaintext Credentials over HTTP

As illustrated in the example above, sending plaintext credentials over HTTP exposes users 

and the organizations for which they work to a number of risks. In addition to credentials, 

HTTP websites can easily expose sensitive customer data such as credit card information 

and PII. 

Of course, even HTTPS isn’t foolproof. Heartbleed, a serious vulnerability in OpenSSL that

first came to light in 2014, is a classic example of how HTTPS can be exploited. Under

normal conditions, SSL/TLS encryption protects information—such as logins and credit card 

numbers—being transmitted over the internet. The Heartbleed vulnerability inadvertently

exposed the memory of systems protected by OpenSSL, compromising the secret keys used 

to encrypt the traffic and giving attackers access to users names, passwords, and other

sensitive information.

Because HTTP or HTTPS are often used to transmit user input from websites and web 

applications, the protocols are sometimes abused to transmit malicious content from the 

public internet into a private environment. For example, an attacker using the SQL injection 

tactic sends SQL statements hidden in HTTP headers or other user-manipulatable fields in 

the HTTP protocol. The encryption used by HTTPS can actually make it more challenging to 

detect SQL injection attacks.

Even with vulnerabilities like Heartbleed, HTTPS is still far more secure than HTTP for

transmission of sensitive information.

A Note on TLS 1.0/1.1
Recently IETF announced the formal deprecation of the TLS protocol version 1.0 and 1.1. In 

the coming months, ExtraHop will carefully monitor the ongoing use of these protocol 

versions across enterprise environments to understand how and if it is being phased out.

INSECURE PROTOCOL USAGE EXPOSES ORGANIZATIONS TO CYBERSECURITY RISK  |   SECURITY ADVISORY     11

How to Determine Whether You’re 
Running Insecure Protocols
There are many ways you can end up running insecure or deprecated protocols or protocol 

versions in your environment, but only a few ways to find them and get them out.

When it comes to the introduction of insecure protocols, the "tyranny of default" is often to 

blame. Devices and software that communicate across the network are configured with 

default settings that may go out of date over time. If a new device or solution is introduced 

into the environment, but left to its default configuration, it may run protocols that are no 

longer considered secure.

Similarly, cloud systems and workloads use configuration templates to determine their

protocol usage, and over time, as new protocols are developed and old versions deprecated, 

these configuration templates may go out of date and need to be updated. Any new

workloads created with an older template may introduce insecure protocols into the environ-

ment. Because of the often short-lived and ephemeral nature of cloud workloads, it can be 

very challenging to catch these instances of insecure protocol usage and know how to get

them out of your system. 

So, how do you do it?

Manual, Point-in-Time Audit

Maintaining an inventory of software and hardware in your environment is a fundamental 

necessity for security hygiene, and is recommended in the first and second security controls 

in the CIS Top 20. Despite being a vital security practice, maintaining this inventory is a 

challenge for many organizations. One way to gather such an inventory is through a manual 

audit using a combination of scanning tools, ranging from the free, open source tool Nmap to 

costlier commercial products.

While scanning the network for devices and protocols in use can provide a valuable snapshot 

of a point in time, it doesn't protect you against new occurrences of insecure protocols. 

Neither does a point-in-time scan offer any guarantee that you've discovered every instance 

of an insecure protocol actively in use. Particularly in a large and heavily segmented network, 

scanning tools may simply not uncover what you're looking for. As one security analyst once 

remarked, “The network is dark and full of terrors.”

So how do you find insecure protocols in an enterprise-scale network?

Continuous Network Monitoring

By passively monitoring and analyzing network traffic continuously, you can discover each 

protocol that is in use on the network at any given moment. This addresses two of the 

primary challenges:

1. Manual audits only give you a point-in-time snapshot. There are many well-docu-

mented ways for insecure protocols to be reintroduced to your environment between 

audits, which are usually conducted quarterly at best.

2. Manual audits are extremely time- and energy-consuming, taking away time from 

other more critical security functions like responding to actual threats.

With the increase in remote and distributed workforces and hybrid environments with both 

on-premises and cloud components, the number of ways that insecure protocols may be 

introduced into your environment have multiplied at the same time that maintaining an 

accurate inventory has grown massively more difficult. Continuous monitoring of network 

traffic for protocol identification and threat detection and response has gone from a 

nice-to-have to a must-have.
NTLMv1 Relay

A skilled attacker 
can easily intercept 
NTLM hashes that 
are equivalent to 
passwords or crack 
NTLMv1 
passwords offline.



What’s in a Protocol?
Protocols are the lingua franca of the network, allowing connected devices to communicate 

with each other regardless of differences in operating systems, hardware, and processes. 

Protocols work by establishing a set of rules for how data is transmitted between different

network devices, and include everything from how that data is protected (encryption) to how

domains are resolved. While protocols for network communication can be updated and 

refined, and new ones can be created, many protocols in common use today have been 

around for decades.

Different protocols are used in different ways, both by IT teams and malicious actors. For

example, the Domain Name System (DNS) protocol makes navigating the internet easier for

users by mapping IP addresses to human readable domain names, but is frequently misused 

by attackers for malicious purposes such as command and control (C2) and data exfiltration.

You can learn more about protocols and threat activities associated with them by visiting the 

ExtraHop Network Protocol Library.

This report focuses specifically on four of those protocols: SMBv1, LLMNR, NTLM, and HTTP, 

the prevalence of these protocols within enterprise IT environments, and the risks associated 

with each.

Server Message Block (SMB) v1
Server Message Block (SMB) is a protocol that was developed in the 1980s and is used 

primarily for sharing things like files, printer services, and communication between networked 

devices. During the 1980s and 1990s, Microsoft attempted to rebrand SMBv1 under the 

name Common Internet File System (CIFS) and expanded its capabilities to include the 

transmission of large files and the establishment of direct connections over port 445.

As it turned out, SMBv1 (CIFS) was notoriously buggy, chatty, and difficult to use, and had 

major security deficiencies. When Microsoft introduced SMBv2 in 2006 they abandoned the 

CIFS nomenclature altogether. Six years later, in 2012, Microsoft introduced SMBv3, and in 

2013 the company officially deprecated SMBv1.

Despite the deprecation, Microsoft continued to install SMBv1 on its Windows Servers until 

2016. By that time, Microsoft was actively urging the Microsoft user community to stop using 

SMBv1, but with millions of machines using the protocol, many of the warnings, including 

those from within the Windows Server engineering group, went unheeded. This is why, when 

EternalBlue and related exploits—known collectively as Eternal(x)—came to light in 2017, 

SMBv1 was still pervasive in IT environments around the world. The Eternal(x) vulnerabilities 

exploit a buffer overflow vulnerability in SMBv1.

How Common is SMBv1?
Based on research conducted by ExtraHop in the first three months of 2021, 88% of

environments have at least one device running SMBv1. While that might seem like a staggering 

number, the good news is that in the cases where it’s just one device, this is probably

intentional. Red teams still use SMBv1 as a tool in penetration testing exercises, which 

probably accounts for those environments with just one instance.

The problem is that 67% of environments have at least 10 devices running SMBv1 and that’s 

likely not intentional. While 10 devices might seem like a relatively small number, the remote 

code execution enabled by Eternal(x) exploits makes any device running SMBv1 an easy pivot 

point from which to launch a large-scale attack. These 10 devices might be a tiny fraction of

the assets in an environment, but defense is a zero-fail mission. SMBv1 doesn’t need to be 

installed on every device in the environment to be used to launch a catastrophic attack. It only

needs to be on one.

The numbers only get scarier from there. According to ExtraHop data, 37% of environments 

have at least 50 devices running SMBv1, and 31% of environments have 100 or more 

devices still using the protocol four years after WannaCry and NotPetya rocked the world.

In the Wild: SMBv1
A High Stakes Gamble

In early 2019, almost two years after the EternalBlue vulnerability came to light, ExtraHop 

was working with a branch of a US Federal Agency. The agency was aware that it still had 

machines running SMBv1. What they didn’t know was which machines, or how many.

Their challenge was two-fold. First, the reason they were still running SMBv1 is because so 

many of their legacy systems used the protocol. Getting rid of it was a massive logistical 

undertaking, as many of their systems still ran on Windows XP, which couldn’t use later

versions of the protocol. However, they’d recently been advised by their NAS vendor that 

the vendor was going to stop supporting the SMBv1 protocol.

Second, while they had continued using SMBv1 long after its vulnerabilities (and the damage 

that could be wrought through their exploitation) had come to light, they were well aware of

the risks associated with the protocol. 

The security team at the agency used their SMB/CIFS Dashboard in Reveal(x) to pull up all 

devices running SMBv1. They quickly found that they still had a large number of devices 

using the protocol, including their entire VDI deployment. This protocol exposed the branch 

of the agency to huge risk of a fast-moving ransomware attack, among other things.

While the transition away from SMBv1 took effort, the move ultimately meant a more secure 

environment for the agency. Unfortunately, the ongoing use of legacy systems that don’t 

support later versions of the SMB protocol are a major reason that many organizations 

remain exposed to Eternal(x) exploitation.

A Brush with Ransomware Four Years After WannaCry

In March 2021, news broke that Taiwanese computing giant Acer had been severely

compromised by ransomware. The $50 million ransom demand was the largest in history, 

and REvil, the cybercriminals responsible for the attack, had architected a trump card. Not

only had their attack encrypted a large percentage of the company’s files, they had also 

exfiltrated huge quantities of data. In the event Acer had a back-up, they could still extract 

the ransom by threatening to leak the stolen data.

The exfiltrate-then-encrypt play is becoming increasingly common in ransomware attacks as 

cybercriminals try to maximize their leverage. Just a few months before the disclosure of the 

Acer attack, an ExtraHop customer experienced a very similar attack.

In late 2020, a large ExtraHop customer based in North America was alerted to a 

Ransomware Activity detection in Reveal(x) 360. The same devices were also seeing alerts 

for detections on SMB data staging and suspicious file reads. By looking at Related 

Detections, the customer’s security team determined that the attackers were also in the 

process of exfiltrating data before they encrypted it in an effort to inflict maximum damage.

The team was able to quickly identify and quarantine affected assets and accounts, and as a 

result, the attackers were only able to encrypt a small percentage of targeted files.

While the customer averted disaster in this case, it serves as a cautionary tale, not only

about the new ransomware playbook, but about the ongoing risks associated with SMBv1. 

Devices running this protocol remain an easy target for attackers, especially ransomware 

gangs more interested in money than in information.

You can read more about this ransomware trend here. 

The Risks of SMBv1

The reason that SMBv1 has been so successfully exploited for attacks like WannaCry and 

NotPetya is that, if an attacker can successfully access a server with SMBv1 enabled, they

can quickly spread malware to other unpatched servers across a network. In an 

SMBv1-based attack, the attacker sends multiple requests, or messages, to a file server over

SMBv1. Each SMBv1 message is specially designed to manipulate the file server memory in a 

way that eventually causes a buffer overflow, which enables the attacker to deliver a 

malicious payload, such as ransomware, to the kernel of the server.

Buffer Overflow attacks of system level services are particularly dangerous because they

provide attackers with a wide latitude for follow-on activities such as injecting malicious 

payloads, scraping user credentials from memory, and setting up hidden persistence 

mechanisms that reside only in memory.

Link-Local Multicast Name Resolution (LLMNR)
Link-Local Multicast Name Resolution (LLMNR) is a protocol that allows name resolution 

without a DNS server. Essentially, LLMNR is a layer 2 protocol that provides a hostname-to-IP

resolution on the basis of a network packet that’s transmitted via Port UDP 5355 to the 

multicast network address (224.0.0.0 through 239.255.255.255). The multicast packet queries 

all network interfaces looking for any that can self-identify authoritatively as the hostname in 

the query.

LLMNR is distinct from other protocols described in this report, in that it was never adopted as 

an IETF standard protocol (although it was defined in RFC 4795).

LLMNR was originally created as a workaround to enable name resolution in environments in 

which DNS servers would be impractical, such as small private networks. LLMNR was created 

as a way to achieve name resolution without the onerous requirements of DNS. The protocol 

has been (and still is) used by operating systems, including Microsoft Windows, to identify

networked devices like file servers.

How Common is LLMNR?
For a protocol that’s not quite a protocol—and a very risky one at that—it’s usage is still 

surprisingly common. De-identified network telemetry from ExtraHop Reveal(x) shows that 

70% of enterprise environments have at least 10 clients still running LLMNR. Unfortunately, as 

the device counts go up, the number of environments with vulnerable clients doesn’t decline 

by much. Fifty-five percent of environments have fifty or more LLMNR clients, while 46% have 

more than 100 such clients.

The Risks of LLMNR
While LLMNR provides a DNS-free mechanism for host-name resolution within a local 

environment, it also provides an avenue of attack for malicious actors. An attacker can use the 

protocol to trick a victim into revealing user credentials. This is done by leveraging LLMNR to 

gain access to the user credential hashes, which can then be cracked to reveal actual 

credentials, especially if older MS password techniques like LANMAN are not disabled.

How does this work if you’re the attacker? The first step is to configure a node on the network 

to answer that it is the hostname associated with any query. For the requesting client, this 

creates a race condition in which the client will not only accept, but trust whichever device 

answers first. This is because the protocol specifications of LLMNR state that all client

responses are trustworthy.

This is when credential hashes come into play. When the client receives a definitive “It’s me!”

from a compromised device, it automatically sends a hashed copy of the current user's 

credentials as part of the response. This provides the attacker with a hashed copy of the 

credentials which can be decrypted, or leveraged via pass-the-hash attacks to begin 

escalating privileges within the broader network.

While DNS is not without its challenges, it’s a far more secure way to accurately identify host

names. With that said, DNS should be carefully monitored to ensure that it is not itself being

utilized for nefarious purposes. 

Fig. 4 When a DNS request for a hostname cannot be resolved or a DNS server is unavailable (1), clients with LLMNR enabled 

will broadcast a query to all local devices over UDP 5355 (2). If an attacker is listening, they can respond and impersonate the 

requested host (3). If the host is an authenticated resource, the client response will contain user credentials. 

New Technology LAN Manager (NTLM) v1
New Technology LAN Manager (NTLM) is a proprietary Microsoft protocol introduced in 

1993 to replace Microsoft LAN Manager (LANMAN). NTLM is part of a cohort of Microsoft 

security protocols designed to collectively provide authentication, integrity, and 

confidentiality to users.

NTLM is what is known as a challenge-response protocol used by servers to authenticate 

clients using password hashes. In its original incarnation NTLMv1, used a fairly simple (and 

easily compromised) authentication method. The process by which NTLM authenticates 

users is described by Microsoft below:

NTLM credentials are based on data obtained during the interactive logon process and 
consist of a domain name, a user name, and a one-way hash of the user's password. 
NTLM uses an encrypted challenge/response protocol to authenticate a user without 
sending the user's password over the wire. Instead, the system requesting 
authentication must perform a calculation that proves it has access to the secured 
NTLM credentials.

While NTLMv1 was eventually replaced by NTLMv2, the next generation of the protocol 

didn’t fare much better when it came to actually protecting passwords from being 

intercepted by malicious actors. NTLMv2 added a few features, including a time stamp and a 

usernames appended to the hash. While this helps mitigate offline relay attacks, it introduced 

other vulnerabilities and did little to improve the overall security of the protocol.

The problem with this cryptography scheme is that it’s incredibly easy to crack. In 2012, it 

was demonstrated that every possible permutation of NTLM’s eight-byte hash could be 

cracked in under six hours. In 2019, an open-source password recovery tool known as 

HashCat demonstrated that it could crack any eight-byte hash in under two and a half hours, 

a fact the The Register noted—with its trademark snark—was less time than it took to watch 

Avengers: Endgame.

How Common is NTLMv1?

Despite the recommendation from Microsoft that organizations cease use of NTLM in favor

of the much more secure Kerberos authentication protocol, NTLM is still quite common in 

enterprise environments. While ExtraHop did not look at the ubiquity of NTLMv2, the less 

secure of the two versions, NTLMv1 is still in broad use.

According to network telemetry from Reveal(x), 34% of environments have at least 10 clients 

running NTLMv1, less than the number of organizations with the same number of devices 

running SMBv1 and LLMNR, but still a significant number for a protocol that has been 

deprecated for over a decade, with 23% of organizations having fifty or more clients using 

NTLMv1, while 19% have one hundred or more clients using the protocol for authentication.

The Risks of NTLM

Using NTLM for authentication exposes organizations to a number of risks. A skilled attacker

can easily intercept NTLM hashes that are equivalent to passwords or crack NTLMv1 

passwords offline. A successful exploit against NTLMv1 authentication can enable an 

attacker to launch machine-in-the-middle (MITM) attacks or take complete control of a 

domain.

Fig. 6 During an NTLM relay attack, the attacker acts as a machine-in-the-middle (MITM), receiving and then forwarding the 

NTLM messages [1]. The attacker then creates an authenticated session with the server [2]. With this technique, the attacker

only needs the NTLM hash to move laterally across the network or access sensitive information stored on servers.

In an MITM attack, malicious actors insert themselves between the client and the server, 

allowing them to intercept all data transmitted between those devices. If the 

communications are not encrypted, or the ciphers are weak, as in the case of NTLM, MITM 

attacks can result in compromised credentials, scrapped PII, stolen trade secrets, the 

injection of fake or manipulated data, and much more. In fact, recently patched flaws in 

current NTLM versions allow attackers to force a downgrade of the security features within 

the NTLM protocol. Attackers can then leverage stolen credentials to pivot between 

machines until they identify domain admin accounts that can be used for direct AD Server

access and a full domain takeover.

Plaintext Credentials over Hypertext 
Transfer Protocol (HTTP)
The Hypertext Transfer Protocol (HTTP) is almost certainly the most commonly known 

application protocol. Whether you know anything about networking or not, chances are 

you’ve seen it at the beginning of every web address you’ve ever visited. A distributed, 

collaborative, hypermedia information system, it allows users to communicate data on the 

World Wide Web. Alongside its sister protocol, HTML, it’s the foundation of the internet we 

know today.

In 1995, four years after the introduction of HTTP, it’s more secure version, HTTPS, arrived 

on the scene. This was in response to demand for companies to be able to process payment 

information over the internet—something that couldn’t be done over HTTP without blatantly 

exposing payment card information. Unlike HTTP, HTTPS uses TLS to encrypt the 

communications between clients and servers, preventing people from intercepting and 

reading your data in flight. It also preserves the integrity of data, helping to prevent it from 

being broken or corrupted.

While HTTP has never been officially deprecated, in 2017, Google took a major step toward 

phasing out the use of insecure HTTP. In January of 2017, Google Chrome started marking all 

non-HTTPS websites as “insecure.” Since that time, any website that stores information such 

as login credentials, credit card information, or PII must use HTTPS in order to function 

effectively in Chrome. Google also gives search priority to HTTPS sites.

While HTTP is not inherently problematic, its use for transmission of sensitive data is 

definitely a major risk. When plaintext credentials are transmitted over HTTP, those 

credentials are left exposed, the internet equivalent of shouting passwords across a crowded 

room, making it trivial for anyone to intercept and steal those credentials.  

How Common is Plaintext over HTTP?

Detections data from ExtraHop Reveal(x) 360 shows that 81 of 100 enterprise environments 

still use insecure HTTP credentials:

In the Wild: Plaintext Credentials over HTTP

In March 2021, ExtraHop experts were working with a major metropolitan law enforcement 

agency when Reveal(x) encountered a “Credentials Sent over HTTP” detection. The detection 

showed that the device sending credentials was a law enforcement agency laptop. The 

hostname matched the naming scheme for agency laptops, the IP address was within agency 

domain space, and the user associated with the laptop was a law enforcement officer with 

the agency.

The security team then pivoted to look at the target of the HTTP credentials, which 

happened to be an internet address. Looking at related records, the team identified the 

address as the domain for a common law enforcement research forum that’s also available to 

the general public. The domain was HTTP, not HTTPS.

Even more concerning was the fact that the officer was accessing a portion of the site for

verified members (typically law enforcement agents and other investigators) that requires a 

login. Because the domain was HTTP and not HTTPS, usernames and passwords were both 

sent in the clear, making it easy for malicious actors to find and steal those credentials 

directly from the web.

Further investigation found that the site in question had a proper SSL certificate and had SSL

enabled. The site was just not configured to make encryption mandatory, potentially

exposing the login credentials of thousands of law enforcement officers and other

investigators who are verified site users.

The Risks of Plaintext Credentials over HTTP

As illustrated in the example above, sending plaintext credentials over HTTP exposes users 

and the organizations for which they work to a number of risks. In addition to credentials, 

HTTP websites can easily expose sensitive customer data such as credit card information 

and PII. 

Of course, even HTTPS isn’t foolproof. Heartbleed, a serious vulnerability in OpenSSL that

first came to light in 2014, is a classic example of how HTTPS can be exploited. Under

normal conditions, SSL/TLS encryption protects information—such as logins and credit card 

numbers—being transmitted over the internet. The Heartbleed vulnerability inadvertently

exposed the memory of systems protected by OpenSSL, compromising the secret keys used 

to encrypt the traffic and giving attackers access to users names, passwords, and other

sensitive information.

Because HTTP or HTTPS are often used to transmit user input from websites and web 

applications, the protocols are sometimes abused to transmit malicious content from the 

public internet into a private environment. For example, an attacker using the SQL injection 

tactic sends SQL statements hidden in HTTP headers or other user-manipulatable fields in 

the HTTP protocol. The encryption used by HTTPS can actually make it more challenging to 

detect SQL injection attacks.

Even with vulnerabilities like Heartbleed, HTTPS is still far more secure than HTTP for

transmission of sensitive information.

A Note on TLS 1.0/1.1
Recently IETF announced the formal deprecation of the TLS protocol version 1.0 and 1.1. In 

the coming months, ExtraHop will carefully monitor the ongoing use of these protocol 

versions across enterprise environments to understand how and if it is being phased out.

INSECURE PROTOCOL USAGE EXPOSES ORGANIZATIONS TO CYBERSECURITY RISK  |   SECURITY ADVISORY     12

How to Determine Whether You’re 
Running Insecure Protocols
There are many ways you can end up running insecure or deprecated protocols or protocol 

versions in your environment, but only a few ways to find them and get them out.

When it comes to the introduction of insecure protocols, the "tyranny of default" is often to 

blame. Devices and software that communicate across the network are configured with 

default settings that may go out of date over time. If a new device or solution is introduced 

into the environment, but left to its default configuration, it may run protocols that are no 

longer considered secure.

Similarly, cloud systems and workloads use configuration templates to determine their

protocol usage, and over time, as new protocols are developed and old versions deprecated, 

these configuration templates may go out of date and need to be updated. Any new

workloads created with an older template may introduce insecure protocols into the environ-

ment. Because of the often short-lived and ephemeral nature of cloud workloads, it can be 

very challenging to catch these instances of insecure protocol usage and know how to get

them out of your system. 

So, how do you do it?

Manual, Point-in-Time Audit

Maintaining an inventory of software and hardware in your environment is a fundamental 

necessity for security hygiene, and is recommended in the first and second security controls 

in the CIS Top 20. Despite being a vital security practice, maintaining this inventory is a 

challenge for many organizations. One way to gather such an inventory is through a manual 

audit using a combination of scanning tools, ranging from the free, open source tool Nmap to 

costlier commercial products.

While scanning the network for devices and protocols in use can provide a valuable snapshot 

of a point in time, it doesn't protect you against new occurrences of insecure protocols. 

Neither does a point-in-time scan offer any guarantee that you've discovered every instance 

of an insecure protocol actively in use. Particularly in a large and heavily segmented network, 

scanning tools may simply not uncover what you're looking for. As one security analyst once 

remarked, “The network is dark and full of terrors.”

So how do you find insecure protocols in an enterprise-scale network?

Continuous Network Monitoring

By passively monitoring and analyzing network traffic continuously, you can discover each 

protocol that is in use on the network at any given moment. This addresses two of the 

primary challenges:

1. Manual audits only give you a point-in-time snapshot. There are many well-docu-

mented ways for insecure protocols to be reintroduced to your environment between 

audits, which are usually conducted quarterly at best.

2. Manual audits are extremely time- and energy-consuming, taking away time from 

other more critical security functions like responding to actual threats.

With the increase in remote and distributed workforces and hybrid environments with both 

on-premises and cloud components, the number of ways that insecure protocols may be 

introduced into your environment have multiplied at the same time that maintaining an 

accurate inventory has grown massively more difficult. Continuous monitoring of network 

traffic for protocol identification and threat detection and response has gone from a 

nice-to-have to a must-have.

INTRODUCED

DEPRECATED

DAMAGES

1991

N/A

> $1B

HTTP
81% of 
environments 
use HTTP
in 2021

81%
Use Unencrypted
HTTP Credentials

Fig. 7 This graph shows the prevalence of unsecured HTTP across enterprise environments.

https://https.cio.gov/faq/


What’s in a Protocol?
Protocols are the lingua franca of the network, allowing connected devices to communicate 

with each other regardless of differences in operating systems, hardware, and processes. 

Protocols work by establishing a set of rules for how data is transmitted between different

network devices, and include everything from how that data is protected (encryption) to how

domains are resolved. While protocols for network communication can be updated and 

refined, and new ones can be created, many protocols in common use today have been 

around for decades.

Different protocols are used in different ways, both by IT teams and malicious actors. For

example, the Domain Name System (DNS) protocol makes navigating the internet easier for

users by mapping IP addresses to human readable domain names, but is frequently misused 

by attackers for malicious purposes such as command and control (C2) and data exfiltration.

You can learn more about protocols and threat activities associated with them by visiting the 

ExtraHop Network Protocol Library.

This report focuses specifically on four of those protocols: SMBv1, LLMNR, NTLM, and HTTP, 

the prevalence of these protocols within enterprise IT environments, and the risks associated 

with each.

Server Message Block (SMB) v1
Server Message Block (SMB) is a protocol that was developed in the 1980s and is used 

primarily for sharing things like files, printer services, and communication between networked 

devices. During the 1980s and 1990s, Microsoft attempted to rebrand SMBv1 under the 

name Common Internet File System (CIFS) and expanded its capabilities to include the 

transmission of large files and the establishment of direct connections over port 445.

As it turned out, SMBv1 (CIFS) was notoriously buggy, chatty, and difficult to use, and had 

major security deficiencies. When Microsoft introduced SMBv2 in 2006 they abandoned the 

CIFS nomenclature altogether. Six years later, in 2012, Microsoft introduced SMBv3, and in 

2013 the company officially deprecated SMBv1.

Despite the deprecation, Microsoft continued to install SMBv1 on its Windows Servers until 

2016. By that time, Microsoft was actively urging the Microsoft user community to stop using 

SMBv1, but with millions of machines using the protocol, many of the warnings, including 

those from within the Windows Server engineering group, went unheeded. This is why, when 

EternalBlue and related exploits—known collectively as Eternal(x)—came to light in 2017, 

SMBv1 was still pervasive in IT environments around the world. The Eternal(x) vulnerabilities 

exploit a buffer overflow vulnerability in SMBv1.

How Common is SMBv1?
Based on research conducted by ExtraHop in the first three months of 2021, 88% of

environments have at least one device running SMBv1. While that might seem like a staggering 

number, the good news is that in the cases where it’s just one device, this is probably

intentional. Red teams still use SMBv1 as a tool in penetration testing exercises, which 

probably accounts for those environments with just one instance.

The problem is that 67% of environments have at least 10 devices running SMBv1 and that’s 

likely not intentional. While 10 devices might seem like a relatively small number, the remote 

code execution enabled by Eternal(x) exploits makes any device running SMBv1 an easy pivot 

point from which to launch a large-scale attack. These 10 devices might be a tiny fraction of

the assets in an environment, but defense is a zero-fail mission. SMBv1 doesn’t need to be 

installed on every device in the environment to be used to launch a catastrophic attack. It only

needs to be on one.

The numbers only get scarier from there. According to ExtraHop data, 37% of environments 

have at least 50 devices running SMBv1, and 31% of environments have 100 or more 

devices still using the protocol four years after WannaCry and NotPetya rocked the world.

In the Wild: SMBv1
A High Stakes Gamble

In early 2019, almost two years after the EternalBlue vulnerability came to light, ExtraHop 

was working with a branch of a US Federal Agency. The agency was aware that it still had 

machines running SMBv1. What they didn’t know was which machines, or how many.

Their challenge was two-fold. First, the reason they were still running SMBv1 is because so 

many of their legacy systems used the protocol. Getting rid of it was a massive logistical 

undertaking, as many of their systems still ran on Windows XP, which couldn’t use later

versions of the protocol. However, they’d recently been advised by their NAS vendor that 

the vendor was going to stop supporting the SMBv1 protocol.

Second, while they had continued using SMBv1 long after its vulnerabilities (and the damage 

that could be wrought through their exploitation) had come to light, they were well aware of

the risks associated with the protocol. 

The security team at the agency used their SMB/CIFS Dashboard in Reveal(x) to pull up all 

devices running SMBv1. They quickly found that they still had a large number of devices 

using the protocol, including their entire VDI deployment. This protocol exposed the branch 

of the agency to huge risk of a fast-moving ransomware attack, among other things.

While the transition away from SMBv1 took effort, the move ultimately meant a more secure 

environment for the agency. Unfortunately, the ongoing use of legacy systems that don’t 

support later versions of the SMB protocol are a major reason that many organizations 

remain exposed to Eternal(x) exploitation.

A Brush with Ransomware Four Years After WannaCry

In March 2021, news broke that Taiwanese computing giant Acer had been severely

compromised by ransomware. The $50 million ransom demand was the largest in history, 

and REvil, the cybercriminals responsible for the attack, had architected a trump card. Not

only had their attack encrypted a large percentage of the company’s files, they had also 

exfiltrated huge quantities of data. In the event Acer had a back-up, they could still extract 

the ransom by threatening to leak the stolen data.

The exfiltrate-then-encrypt play is becoming increasingly common in ransomware attacks as 

cybercriminals try to maximize their leverage. Just a few months before the disclosure of the 

Acer attack, an ExtraHop customer experienced a very similar attack.

In late 2020, a large ExtraHop customer based in North America was alerted to a 

Ransomware Activity detection in Reveal(x) 360. The same devices were also seeing alerts 

for detections on SMB data staging and suspicious file reads. By looking at Related 

Detections, the customer’s security team determined that the attackers were also in the 

process of exfiltrating data before they encrypted it in an effort to inflict maximum damage.

The team was able to quickly identify and quarantine affected assets and accounts, and as a 

result, the attackers were only able to encrypt a small percentage of targeted files.

While the customer averted disaster in this case, it serves as a cautionary tale, not only

about the new ransomware playbook, but about the ongoing risks associated with SMBv1. 

Devices running this protocol remain an easy target for attackers, especially ransomware 

gangs more interested in money than in information.

You can read more about this ransomware trend here. 

The Risks of SMBv1

The reason that SMBv1 has been so successfully exploited for attacks like WannaCry and 

NotPetya is that, if an attacker can successfully access a server with SMBv1 enabled, they

can quickly spread malware to other unpatched servers across a network. In an 

SMBv1-based attack, the attacker sends multiple requests, or messages, to a file server over

SMBv1. Each SMBv1 message is specially designed to manipulate the file server memory in a 

way that eventually causes a buffer overflow, which enables the attacker to deliver a 

malicious payload, such as ransomware, to the kernel of the server.

Buffer Overflow attacks of system level services are particularly dangerous because they

provide attackers with a wide latitude for follow-on activities such as injecting malicious 

payloads, scraping user credentials from memory, and setting up hidden persistence 

mechanisms that reside only in memory.

Link-Local Multicast Name Resolution (LLMNR)
Link-Local Multicast Name Resolution (LLMNR) is a protocol that allows name resolution 

without a DNS server. Essentially, LLMNR is a layer 2 protocol that provides a hostname-to-IP

resolution on the basis of a network packet that’s transmitted via Port UDP 5355 to the 

multicast network address (224.0.0.0 through 239.255.255.255). The multicast packet queries 

all network interfaces looking for any that can self-identify authoritatively as the hostname in 

the query.

LLMNR is distinct from other protocols described in this report, in that it was never adopted as 

an IETF standard protocol (although it was defined in RFC 4795).

LLMNR was originally created as a workaround to enable name resolution in environments in 

which DNS servers would be impractical, such as small private networks. LLMNR was created 

as a way to achieve name resolution without the onerous requirements of DNS. The protocol 

has been (and still is) used by operating systems, including Microsoft Windows, to identify

networked devices like file servers.

How Common is LLMNR?
For a protocol that’s not quite a protocol—and a very risky one at that—it’s usage is still 

surprisingly common. De-identified network telemetry from ExtraHop Reveal(x) shows that 

70% of enterprise environments have at least 10 clients still running LLMNR. Unfortunately, as 

the device counts go up, the number of environments with vulnerable clients doesn’t decline 

by much. Fifty-five percent of environments have fifty or more LLMNR clients, while 46% have 

more than 100 such clients.

The Risks of LLMNR
While LLMNR provides a DNS-free mechanism for host-name resolution within a local 

environment, it also provides an avenue of attack for malicious actors. An attacker can use the 

protocol to trick a victim into revealing user credentials. This is done by leveraging LLMNR to 

gain access to the user credential hashes, which can then be cracked to reveal actual 

credentials, especially if older MS password techniques like LANMAN are not disabled.

How does this work if you’re the attacker? The first step is to configure a node on the network 

to answer that it is the hostname associated with any query. For the requesting client, this 

creates a race condition in which the client will not only accept, but trust whichever device 

answers first. This is because the protocol specifications of LLMNR state that all client

responses are trustworthy.

This is when credential hashes come into play. When the client receives a definitive “It’s me!”

from a compromised device, it automatically sends a hashed copy of the current user's 

credentials as part of the response. This provides the attacker with a hashed copy of the 

credentials which can be decrypted, or leveraged via pass-the-hash attacks to begin 

escalating privileges within the broader network.

While DNS is not without its challenges, it’s a far more secure way to accurately identify host

names. With that said, DNS should be carefully monitored to ensure that it is not itself being

utilized for nefarious purposes. 

Fig. 4 When a DNS request for a hostname cannot be resolved or a DNS server is unavailable (1), clients with LLMNR enabled 

will broadcast a query to all local devices over UDP 5355 (2). If an attacker is listening, they can respond and impersonate the 

requested host (3). If the host is an authenticated resource, the client response will contain user credentials. 

New Technology LAN Manager (NTLM) v1
New Technology LAN Manager (NTLM) is a proprietary Microsoft protocol introduced in 

1993 to replace Microsoft LAN Manager (LANMAN). NTLM is part of a cohort of Microsoft 

security protocols designed to collectively provide authentication, integrity, and 

confidentiality to users.

NTLM is what is known as a challenge-response protocol used by servers to authenticate 

clients using password hashes. In its original incarnation NTLMv1, used a fairly simple (and 

easily compromised) authentication method. The process by which NTLM authenticates 

users is described by Microsoft below:

NTLM credentials are based on data obtained during the interactive logon process and 
consist of a domain name, a user name, and a one-way hash of the user's password. 
NTLM uses an encrypted challenge/response protocol to authenticate a user without 
sending the user's password over the wire. Instead, the system requesting 
authentication must perform a calculation that proves it has access to the secured 
NTLM credentials.

While NTLMv1 was eventually replaced by NTLMv2, the next generation of the protocol 

didn’t fare much better when it came to actually protecting passwords from being 

intercepted by malicious actors. NTLMv2 added a few features, including a time stamp and a 

usernames appended to the hash. While this helps mitigate offline relay attacks, it introduced 

other vulnerabilities and did little to improve the overall security of the protocol.

The problem with this cryptography scheme is that it’s incredibly easy to crack. In 2012, it 

was demonstrated that every possible permutation of NTLM’s eight-byte hash could be 

cracked in under six hours. In 2019, an open-source password recovery tool known as 

HashCat demonstrated that it could crack any eight-byte hash in under two and a half hours, 

a fact the The Register noted—with its trademark snark—was less time than it took to watch 

Avengers: Endgame.

How Common is NTLMv1?

Despite the recommendation from Microsoft that organizations cease use of NTLM in favor

of the much more secure Kerberos authentication protocol, NTLM is still quite common in 

enterprise environments. While ExtraHop did not look at the ubiquity of NTLMv2, the less 

secure of the two versions, NTLMv1 is still in broad use.

According to network telemetry from Reveal(x), 34% of environments have at least 10 clients 

running NTLMv1, less than the number of organizations with the same number of devices 

running SMBv1 and LLMNR, but still a significant number for a protocol that has been 

deprecated for over a decade, with 23% of organizations having fifty or more clients using 

NTLMv1, while 19% have one hundred or more clients using the protocol for authentication.

The Risks of NTLM

Using NTLM for authentication exposes organizations to a number of risks. A skilled attacker

can easily intercept NTLM hashes that are equivalent to passwords or crack NTLMv1 

passwords offline. A successful exploit against NTLMv1 authentication can enable an 

attacker to launch machine-in-the-middle (MITM) attacks or take complete control of a 

domain.

Fig. 6 During an NTLM relay attack, the attacker acts as a machine-in-the-middle (MITM), receiving and then forwarding the 

NTLM messages [1]. The attacker then creates an authenticated session with the server [2]. With this technique, the attacker

only needs the NTLM hash to move laterally across the network or access sensitive information stored on servers.

In an MITM attack, malicious actors insert themselves between the client and the server, 

allowing them to intercept all data transmitted between those devices. If the 

communications are not encrypted, or the ciphers are weak, as in the case of NTLM, MITM 

attacks can result in compromised credentials, scrapped PII, stolen trade secrets, the 

injection of fake or manipulated data, and much more. In fact, recently patched flaws in 

current NTLM versions allow attackers to force a downgrade of the security features within 

the NTLM protocol. Attackers can then leverage stolen credentials to pivot between 

machines until they identify domain admin accounts that can be used for direct AD Server

access and a full domain takeover.

Plaintext Credentials over Hypertext 
Transfer Protocol (HTTP)
The Hypertext Transfer Protocol (HTTP) is almost certainly the most commonly known 

application protocol. Whether you know anything about networking or not, chances are 

you’ve seen it at the beginning of every web address you’ve ever visited. A distributed, 

collaborative, hypermedia information system, it allows users to communicate data on the 

World Wide Web. Alongside its sister protocol, HTML, it’s the foundation of the internet we 

know today.

In 1995, four years after the introduction of HTTP, it’s more secure version, HTTPS, arrived 

on the scene. This was in response to demand for companies to be able to process payment 

information over the internet—something that couldn’t be done over HTTP without blatantly

exposing payment card information. Unlike HTTP, HTTPS uses TLS to encrypt the 

communications between clients and servers, preventing people from intercepting and 

reading your data in flight. It also preserves the integrity of data, helping to prevent it from 

being broken or corrupted.

While HTTP has never been officially deprecated, in 2017, Google took a major step toward 

phasing out the use of insecure HTTP. In January of 2017, Google Chrome started marking all 

non-HTTPS websites as “insecure.” Since that time, any website that stores information such 

as login credentials, credit card information, or PII must use HTTPS in order to function 

effectively in Chrome. Google also gives search priority to HTTPS sites.

While HTTP is not inherently problematic, its use for transmission of sensitive data is 

definitely a major risk. When plaintext credentials are transmitted over HTTP, those 

credentials are left exposed, the internet equivalent of shouting passwords across a crowded 

room, making it trivial for anyone to intercept and steal those credentials.  

How Common is Plaintext over HTTP?

Detections data from ExtraHop Reveal(x) 360 shows that 81 of 100 enterprise environments 

still use insecure HTTP credentials:

In the Wild: Plaintext Credentials over HTTP

In March 2021, ExtraHop experts were working with a major metropolitan law enforcement 

agency when Reveal(x) encountered a “Credentials Sent over HTTP” detection. The detection 

showed that the device sending credentials was a law enforcement agency laptop. The 

hostname matched the naming scheme for agency laptops, the IP address was within agency

domain space, and the user associated with the laptop was a law enforcement officer with 

the agency.

The security team then pivoted to look at the target of the HTTP credentials, which 

happened to be an internet address. Looking at related records, the team identified the 

address as the domain for a common law enforcement research forum that’s also available to 

the general public. The domain was HTTP, not HTTPS.

Even more concerning was the fact that the officer was accessing a portion of the site for 

verified members (typically law enforcement agents and other investigators) that requires a 

login. Because the domain was HTTP and not HTTPS, usernames and passwords were both 

sent in the clear, making it easy for malicious actors to find and steal those credentials 

directly from the web.

Further investigation found that the site in question had a proper SSL certificate and had SSL 

enabled. The site was just not configured to make encryption mandatory, potentially 

exposing the login credentials of thousands of law enforcement officers and other 

investigators who are verified site users.

The Risks of Plaintext Credentials over HTTP

As illustrated in the example above, sending plaintext credentials over HTTP exposes users 

and the organizations for which they work to a number of risks. In addition to credentials, 

HTTP websites can easily expose sensitive customer data such as credit card information 

and PII. 

Of course, even HTTPS isn’t foolproof. Heartbleed, a serious vulnerability in OpenSSL that 

first came to light in 2014, is a classic example of how HTTPS can be exploited. Under 

normal conditions, SSL/TLS encryption protects information—such as logins and credit card 

numbers—being transmitted over the internet. The Heartbleed vulnerability inadvertently 

exposed the memory of systems protected by OpenSSL, compromising the secret keys used 

to encrypt the traffic and giving attackers access to users names, passwords, and other 

sensitive information.

Because HTTP or HTTPS are often used to transmit user input from websites and web 

applications, the protocols are sometimes abused to transmit malicious content from the 

public internet into a private environment. For example, an attacker using the SQL injection 

tactic sends SQL statements hidden in HTTP headers or other user-manipulatable fields in 

the HTTP protocol. The encryption used by HTTPS can actually make it more challenging to 

detect SQL injection attacks.

Even with vulnerabilities like Heartbleed, HTTPS is still far more secure than HTTP for 

transmission of sensitive information.

A Note on TLS 1.0/1.1
Recently IETF announced the formal deprecation of the TLS protocol version 1.0 and 1.1. In 

the coming months, ExtraHop will carefully monitor the ongoing use of these protocol 

versions across enterprise environments to understand how and if it is being phased out.

INSECURE PROTOCOL USAGE EXPOSES ORGANIZATIONS TO CYBERSECURITY RISK  |   SECURITY ADVISORY    13

How to Determine Whether You’re 
Running Insecure Protocols
There are many ways you can end up running insecure or deprecated protocols or protocol 

versions in your environment, but only a few ways to find them and get them out.

When it comes to the introduction of insecure protocols, the "tyranny of default" is often to 

blame. Devices and software that communicate across the network are configured with 

default settings that may go out of date over time. If a new device or solution is introduced 

into the environment, but left to its default configuration, it may run protocols that are no 

longer considered secure.

Similarly, cloud systems and workloads use configuration templates to determine their

protocol usage, and over time, as new protocols are developed and old versions deprecated, 

these configuration templates may go out of date and need to be updated. Any new

workloads created with an older template may introduce insecure protocols into the environ-

ment. Because of the often short-lived and ephemeral nature of cloud workloads, it can be 

very challenging to catch these instances of insecure protocol usage and know how to get

them out of your system. 

So, how do you do it?

Manual, Point-in-Time Audit

Maintaining an inventory of software and hardware in your environment is a fundamental 

necessity for security hygiene, and is recommended in the first and second security controls 

in the CIS Top 20. Despite being a vital security practice, maintaining this inventory is a 

challenge for many organizations. One way to gather such an inventory is through a manual 

audit using a combination of scanning tools, ranging from the free, open source tool Nmap to 

costlier commercial products.

While scanning the network for devices and protocols in use can provide a valuable snapshot 

of a point in time, it doesn't protect you against new occurrences of insecure protocols. 

Neither does a point-in-time scan offer any guarantee that you've discovered every instance 

of an insecure protocol actively in use. Particularly in a large and heavily segmented network, 

scanning tools may simply not uncover what you're looking for. As one security analyst once 

remarked, “The network is dark and full of terrors.”

So how do you find insecure protocols in an enterprise-scale network?

Continuous Network Monitoring

By passively monitoring and analyzing network traffic continuously, you can discover each 

protocol that is in use on the network at any given moment. This addresses two of the 

primary challenges:

1. Manual audits only give you a point-in-time snapshot. There are many well-docu-

mented ways for insecure protocols to be reintroduced to your environment between 

audits, which are usually conducted quarterly at best.

2. Manual audits are extremely time- and energy-consuming, taking away time from 

other more critical security functions like responding to actual threats.

With the increase in remote and distributed workforces and hybrid environments with both 

on-premises and cloud components, the number of ways that insecure protocols may be 

introduced into your environment have multiplied at the same time that maintaining an 

accurate inventory has grown massively more difficult. Continuous monitoring of network 

traffic for protocol identification and threat detection and response has gone from a 

nice-to-have to a must-have.

HTTP websites can 
easily expose 
sensitive customer 
data such as credit 
card information 
and PII. 

https://heartbleed.com/
https://datatracker.ietf.org/doc/rfc8996/


What’s in a Protocol?
Protocols are the lingua franca of the network, allowing connected devices to communicate 

with each other regardless of differences in operating systems, hardware, and processes. 

Protocols work by establishing a set of rules for how data is transmitted between different 

network devices, and include everything from how that data is protected (encryption) to how 

domains are resolved. While protocols for network communication can be updated and 

refined, and new ones can be created, many protocols in common use today have been 

around for decades.

Different protocols are used in different ways, both by IT teams and malicious actors. For 

example, the Domain Name System (DNS) protocol makes navigating the internet easier for 

users by mapping IP addresses to human readable domain names, but is frequently misused 

by attackers for malicious purposes such as command and control (C2) and data exfiltration.

You can learn more about protocols and threat activities associated with them by visiting the 

ExtraHop Network Protocol Library.

This report focuses specifically on four of those protocols: SMBv1, LLMNR, NTLM, and HTTP, 

the prevalence of these protocols within enterprise IT environments, and the risks associated 

with each.

Server Message Block (SMB) v1
Server Message Block (SMB) is a protocol that was developed in the 1980s and is used 

primarily for sharing things like files, printer services, and communication between networked 

devices. During the 1980s and 1990s, Microsoft attempted to rebrand SMBv1 under the 

name Common Internet File System (CIFS) and expanded its capabilities to include the 

transmission of large files and the establishment of direct connections over port 445.

As it turned out, SMBv1 (CIFS) was notoriously buggy, chatty, and difficult to use, and had 

major security deficiencies. When Microsoft introduced SMBv2 in 2006 they abandoned the 

CIFS nomenclature altogether. Six years later, in 2012, Microsoft introduced SMBv3, and in 

2013 the company officially deprecated SMBv1.

Despite the deprecation, Microsoft continued to install SMBv1 on its Windows Servers until 

2016. By that time, Microsoft was actively urging the Microsoft user community to stop using 

SMBv1, but with millions of machines using the protocol, many of the warnings, including 

those from within the Windows Server engineering group, went unheeded. This is why, when 

EternalBlue and related exploits—known collectively as Eternal(x)—came to light in 2017, 

SMBv1 was still pervasive in IT environments around the world. The Eternal(x) vulnerabilities 

exploit a buffer overflow vulnerability in SMBv1.

How Common is SMBv1?
Based on research conducted by ExtraHop in the first three months of 2021, 88% of 

environments have at least one device running SMBv1. While that might seem like a staggering 

number, the good news is that in the cases where it’s just one device, this is probably 

intentional. Red teams still use SMBv1 as a tool in penetration testing exercises, which 

probably accounts for those environments with just one instance.

The problem is that 67% of environments have at least 10 devices running SMBv1 and that’s 

likely not intentional. While 10 devices might seem like a relatively small number, the remote 

code execution enabled by Eternal(x) exploits makes any device running SMBv1 an easy pivot 

point from which to launch a large-scale attack. These 10 devices might be a tiny fraction of 

the assets in an environment, but defense is a zero-fail mission. SMBv1 doesn’t need to be 

installed on every device in the environment to be used to launch a catastrophic attack. It only 

needs to be on one.

The numbers only get scarier from there. According to ExtraHop data, 37% of environments 

have at least 50 devices running SMBv1, and 31% of environments have 100 or more 

devices still using the protocol four years after WannaCry and NotPetya rocked the world.

In the Wild: SMBv1
A High Stakes Gamble

In early 2019, almost two years after the EternalBlue vulnerability came to light, ExtraHop 

was working with a branch of a US Federal Agency. The agency was aware that it still had 

machines running SMBv1. What they didn’t know was which machines, or how many.

Their challenge was two-fold. First, the reason they were still running SMBv1 is because so 

many of their legacy systems used the protocol. Getting rid of it was a massive logistical 

undertaking, as many of their systems still ran on Windows XP, which couldn’t use later 

versions of the protocol. However, they’d recently been advised by their NAS vendor that 

the vendor was going to stop supporting the SMBv1 protocol.

Second, while they had continued using SMBv1 long after its vulnerabilities (and the damage 

that could be wrought through their exploitation) had come to light, they were well aware of 

the risks associated with the protocol. 

The security team at the agency used their SMB/CIFS Dashboard in Reveal(x) to pull up all 

devices running SMBv1. They quickly found that they still had a large number of devices 

using the protocol, including their entire VDI deployment. This protocol exposed the branch 

of the agency to huge risk of a fast-moving ransomware attack, among other things.

While the transition away from SMBv1 took effort, the move ultimately meant a more secure 

environment for the agency. Unfortunately, the ongoing use of legacy systems that don’t 

support later versions of the SMB protocol are a major reason that many organizations 

remain exposed to Eternal(x) exploitation.

A Brush with Ransomware Four Years After WannaCry

In March 2021, news broke that Taiwanese computing giant Acer had been severely 

compromised by ransomware. The $50 million ransom demand was the largest in history, 

and REvil, the cybercriminals responsible for the attack, had architected a trump card. Not 

only had their attack encrypted a large percentage of the company’s files, they had also 

exfiltrated huge quantities of data. In the event Acer had a back-up, they could still extract 

the ransom by threatening to leak the stolen data.

The exfiltrate-then-encrypt play is becoming increasingly common in ransomware attacks as 

cybercriminals try to maximize their leverage. Just a few months before the disclosure of the 

Acer attack, an ExtraHop customer experienced a very similar attack.

In late 2020, a large ExtraHop customer based in North America was alerted to a 

Ransomware Activity detection in Reveal(x) 360. The same devices were also seeing alerts 

for detections on SMB data staging and suspicious file reads. By looking at Related 

Detections, the customer’s security team determined that the attackers were also in the 

process of exfiltrating data before they encrypted it in an effort to inflict maximum damage.

The team was able to quickly identify and quarantine affected assets and accounts, and as a 

result, the attackers were only able to encrypt a small percentage of targeted files.

While the customer averted disaster in this case, it serves as a cautionary tale, not only 

about the new ransomware playbook, but about the ongoing risks associated with SMBv1. 

Devices running this protocol remain an easy target for attackers, especially ransomware 

gangs more interested in money than in information.

You can read more about this ransomware trend here. 

The Risks of SMBv1

The reason that SMBv1 has been so successfully exploited for attacks like WannaCry and 

NotPetya is that, if an attacker can successfully access a server with SMBv1 enabled, they 

can quickly spread malware to other unpatched servers across a network. In an 

SMBv1-based attack, the attacker sends multiple requests, or messages, to a file server over 

SMBv1. Each SMBv1 message is specially designed to manipulate the file server memory in a 

way that eventually causes a buffer overflow, which enables the attacker to deliver a 

malicious payload, such as ransomware, to the kernel of the server.

Buffer Overflow attacks of system level services are particularly dangerous because they 

provide attackers with a wide latitude for follow-on activities such as injecting malicious 

payloads, scraping user credentials from memory, and setting up hidden persistence 

mechanisms that reside only in memory.

Link-Local Multicast Name Resolution (LLMNR)
Link-Local Multicast Name Resolution (LLMNR) is a protocol that allows name resolution 

without a DNS server. Essentially, LLMNR is a layer 2 protocol that provides a hostname-to-IP 

resolution on the basis of a network packet that’s transmitted via Port UDP 5355 to the 

multicast network address (224.0.0.0 through 239.255.255.255). The multicast packet queries 

all network interfaces looking for any that can self-identify authoritatively as the hostname in 

the query.

LLMNR is distinct from other protocols described in this report, in that it was never adopted as 

an IETF standard protocol (although it was defined in RFC 4795).

LLMNR was originally created as a workaround to enable name resolution in environments in 

which DNS servers would be impractical, such as small private networks. LLMNR was created 

as a way to achieve name resolution without the onerous requirements of DNS. The protocol 

has been (and still is) used by operating systems, including Microsoft Windows, to identify 

networked devices like file servers.

How Common is LLMNR?
For a protocol that’s not quite a protocol—and a very risky one at that—it’s usage is still 

surprisingly common. De-identified network telemetry from ExtraHop Reveal(x) shows that 

70% of enterprise environments have at least 10 clients still running LLMNR. Unfortunately, as 

the device counts go up, the number of environments with vulnerable clients doesn’t decline 

by much. Fifty-five percent of environments have fifty or more LLMNR clients, while 46% have 

more than 100 such clients.

The Risks of LLMNR
While LLMNR provides a DNS-free mechanism for host-name resolution within a local 

environment, it also provides an avenue of attack for malicious actors. An attacker can use the 

protocol to trick a victim into revealing user credentials. This is done by leveraging LLMNR to 

gain access to the user credential hashes, which can then be cracked to reveal actual 

credentials, especially if older MS password techniques like LANMAN are not disabled.

How does this work if you’re the attacker? The first step is to configure a node on the network 

to answer that it is the hostname associated with any query. For the requesting client, this 

creates a race condition in which the client will not only accept, but trust whichever device 

answers first. This is because the protocol specifications of LLMNR state that all client 

responses are trustworthy.

This is when credential hashes come into play. When the client receives a definitive “It’s me!” 

from a compromised device, it automatically sends a hashed copy of the current user's 

credentials as part of the response. This provides the attacker with a hashed copy of the 

credentials which can be decrypted, or leveraged via pass-the-hash attacks to begin 

escalating privileges within the broader network.

While DNS is not without its challenges, it’s a far more secure way to accurately identify host 

names. With that said, DNS should be carefully monitored to ensure that it is not itself being 

utilized for nefarious purposes. 

Fig. 4 When a DNS request for a hostname cannot be resolved or a DNS server is unavailable (1), clients with LLMNR enabled 

will broadcast a query to all local devices over UDP 5355 (2). If an attacker is listening, they can respond and impersonate the 

requested host (3). If the host is an authenticated resource, the client response will contain user credentials. 

New Technology LAN Manager (NTLM) v1
New Technology LAN Manager (NTLM) is a proprietary Microsoft protocol introduced in 

1993 to replace Microsoft LAN Manager (LANMAN). NTLM is part of a cohort of Microsoft 

security protocols designed to collectively provide authentication, integrity, and 

confidentiality to users.

NTLM is what is known as a challenge-response protocol used by servers to authenticate 

clients using password hashes. In its original incarnation NTLMv1, used a fairly simple (and 

easily compromised) authentication method. The process by which NTLM authenticates 

users is described by Microsoft below:

NTLM credentials are based on data obtained during the interactive logon process and 
consist of a domain name, a user name, and a one-way hash of the user's password. 
NTLM uses an encrypted challenge/response protocol to authenticate a user without 
sending the user's password over the wire. Instead, the system requesting 
authentication must perform a calculation that proves it has access to the secured 
NTLM credentials.

While NTLMv1 was eventually replaced by NTLMv2, the next generation of the protocol 

didn’t fare much better when it came to actually protecting passwords from being 

intercepted by malicious actors. NTLMv2 added a few features, including a time stamp and a 

usernames appended to the hash. While this helps mitigate offline relay attacks, it introduced 

other vulnerabilities and did little to improve the overall security of the protocol.

The problem with this cryptography scheme is that it’s incredibly easy to crack. In 2012, it 

was demonstrated that every possible permutation of NTLM’s eight-byte hash could be 

cracked in under six hours. In 2019, an open-source password recovery tool known as 

HashCat demonstrated that it could crack any eight-byte hash in under two and a half hours, 

a fact the The Register noted—with its trademark snark—was less time than it took to watch 

Avengers: Endgame.

How Common is NTLMv1?

Despite the recommendation from Microsoft that organizations cease use of NTLM in favor 

of the much more secure Kerberos authentication protocol, NTLM is still quite common in 

enterprise environments. While ExtraHop did not look at the ubiquity of NTLMv2, the less 

secure of the two versions, NTLMv1 is still in broad use.

According to network telemetry from Reveal(x), 34% of environments have at least 10 clients 

running NTLMv1, less than the number of organizations with the same number of devices 

running SMBv1 and LLMNR, but still a significant number for a protocol that has been 

deprecated for over a decade, with 23% of organizations having fifty or more clients using 

NTLMv1, while 19% have one hundred or more clients using the protocol for authentication.

The Risks of NTLM

Using NTLM for authentication exposes organizations to a number of risks. A skilled attacker 

can easily intercept NTLM hashes that are equivalent to passwords or crack NTLMv1 

passwords offline. A successful exploit against NTLMv1 authentication can enable an 

attacker to launch machine-in-the-middle (MITM) attacks or take complete control of a 

domain.

Fig. 6 During an NTLM relay attack, the attacker acts as a machine-in-the-middle (MITM), receiving and then forwarding the 

NTLM messages [1]. The attacker then creates an authenticated session with the server [2]. With this technique, the attacker 

only needs the NTLM hash to move laterally across the network or access sensitive information stored on servers.

In an MITM attack, malicious actors insert themselves between the client and the server, 

allowing them to intercept all data transmitted between those devices. If the 

communications are not encrypted, or the ciphers are weak, as in the case of NTLM, MITM 

attacks can result in compromised credentials, scrapped PII, stolen trade secrets, the 

injection of fake or manipulated data, and much more. In fact, recently patched flaws in 

current NTLM versions allow attackers to force a downgrade of the security features within 

the NTLM protocol. Attackers can then leverage stolen credentials to pivot between 

machines until they identify domain admin accounts that can be used for direct AD Server 

access and a full domain takeover.

Plaintext Credentials over Hypertext 
Transfer Protocol (HTTP)
The Hypertext Transfer Protocol (HTTP) is almost certainly the most commonly known 

application protocol. Whether you know anything about networking or not, chances are 

you’ve seen it at the beginning of every web address you’ve ever visited. A distributed, 

collaborative, hypermedia information system, it allows users to communicate data on the 

World Wide Web. Alongside its sister protocol, HTML, it’s the foundation of the internet we 

know today.

In 1995, four years after the introduction of HTTP, it’s more secure version, HTTPS, arrived 

on the scene. This was in response to demand for companies to be able to process payment 

information over the internet—something that couldn’t be done over HTTP without blatantly 

exposing payment card information. Unlike HTTP, HTTPS uses TLS to encrypt the 

communications between clients and servers, preventing people from intercepting and 

reading your data in flight. It also preserves the integrity of data, helping to prevent it from 

being broken or corrupted.

While HTTP has never been officially deprecated, in 2017, Google took a major step toward 

phasing out the use of insecure HTTP. In January of 2017, Google Chrome started marking all 

non-HTTPS websites as “insecure.” Since that time, any website that stores information such 

as login credentials, credit card information, or PII must use HTTPS in order to function 

effectively in Chrome. Google also gives search priority to HTTPS sites.

While HTTP is not inherently problematic, its use for transmission of sensitive data is 

definitely a major risk. When plaintext credentials are transmitted over HTTP, those 

credentials are left exposed, the internet equivalent of shouting passwords across a crowded 

room, making it trivial for anyone to intercept and steal those credentials.  

How Common is Plaintext over HTTP?

Detections data from ExtraHop Reveal(x) 360 shows that 81 of 100 enterprise environments 

still use insecure HTTP credentials:

In the Wild: Plaintext Credentials over HTTP

In March 2021, ExtraHop experts were working with a major metropolitan law enforcement 

agency when Reveal(x) encountered a “Credentials Sent over HTTP” detection. The detection 

showed that the device sending credentials was a law enforcement agency laptop. The 

hostname matched the naming scheme for agency laptops, the IP address was within agency 

domain space, and the user associated with the laptop was a law enforcement officer with 

the agency.

The security team then pivoted to look at the target of the HTTP credentials, which 

happened to be an internet address. Looking at related records, the team identified the 

address as the domain for a common law enforcement research forum that’s also available to 

the general public. The domain was HTTP, not HTTPS.

Even more concerning was the fact that the officer was accessing a portion of the site for 

verified members (typically law enforcement agents and other investigators) that requires a 

login. Because the domain was HTTP and not HTTPS, usernames and passwords were both 

sent in the clear, making it easy for malicious actors to find and steal those credentials 

directly from the web.

Further investigation found that the site in question had a proper SSL certificate and had SSL 

enabled. The site was just not configured to make encryption mandatory, potentially 

exposing the login credentials of thousands of law enforcement officers and other 

investigators who are verified site users.

The Risks of Plaintext Credentials over HTTP

As illustrated in the example above, sending plaintext credentials over HTTP exposes users 

and the organizations for which they work to a number of risks. In addition to credentials, 

HTTP websites can easily expose sensitive customer data such as credit card information 

and PII. 

Of course, even HTTPS isn’t foolproof. Heartbleed, a serious vulnerability in OpenSSL that 

first came to light in 2014, is a classic example of how HTTPS can be exploited. Under 

normal conditions, SSL/TLS encryption protects information—such as logins and credit card 

numbers—being transmitted over the internet. The Heartbleed vulnerability inadvertently 

exposed the memory of systems protected by OpenSSL, compromising the secret keys used 

to encrypt the traffic and giving attackers access to users names, passwords, and other 

sensitive information.

Because HTTP or HTTPS are often used to transmit user input from websites and web 

applications, the protocols are sometimes abused to transmit malicious content from the 

public internet into a private environment. For example, an attacker using the SQL injection 

tactic sends SQL statements hidden in HTTP headers or other user-manipulatable fields in 

the HTTP protocol. The encryption used by HTTPS can actually make it more challenging to 

detect SQL injection attacks.

Even with vulnerabilities like Heartbleed, HTTPS is still far more secure than HTTP for 

transmission of sensitive information.

A Note on TLS 1.0/1.1
Recently IETF announced the formal deprecation of the TLS protocol version 1.0 and 1.1. In 

the coming months, ExtraHop will carefully monitor the ongoing use of these protocol 

versions across enterprise environments to understand how and if it is being phased out.

 

How to Determine Whether You’re 
Running Insecure Protocols
There are many ways you can end up running insecure or deprecated protocols or protocol 

versions in your environment, but only a few ways to find them and get them out.

When it comes to the introduction of insecure protocols, the "tyranny of default" is often to 

blame. Devices and software that communicate across the network are configured with 

default settings that may go out of date over time. If a new device or solution is introduced 

into the environment, but left to its default configuration, it may run protocols that are no 

longer considered secure.

Similarly, cloud systems and workloads use configuration templates to determine their 

protocol usage, and over time, as new protocols are developed and old versions deprecated, 

these configuration templates may go out of date and need to be updated. Any new 

workloads created with an older template may introduce insecure protocols into the environ-

ment. Because of the often short-lived and ephemeral nature of cloud workloads, it can be 

very challenging to catch these instances of insecure protocol usage and know how to get 

them out of your system. 

So, how do you do it?

Manual, Point-in-Time Audit

Maintaining an inventory of software and hardware in your environment is a fundamental 

necessity for security hygiene, and is recommended in the first and second security controls 

in the CIS Top 20. Despite being a vital security practice, maintaining this inventory is a 

challenge for many organizations. One way to gather such an inventory is through a manual 

audit using a combination of scanning tools, ranging from the free, open source tool Nmap to 

costlier commercial products.

While scanning the network for devices and protocols in use can provide a valuable snapshot 

of a point in time, it doesn't protect you against new occurrences of insecure protocols. 

Neither does a point-in-time scan offer any guarantee that you've discovered every instance 

of an insecure protocol actively in use. Particularly in a large and heavily segmented network, 

scanning tools may simply not uncover what you're looking for. As one security analyst once 

remarked, “The network is dark and full of terrors.” 

So how do you find insecure protocols in an enterprise-scale network?

INSECURE PROTOCOL USAGE EXPOSES ORGANIZATIONS TO CYBERSECURITY RISK  |   SECURITY ADVISORY     14

Continuous Network Monitoring

By passively monitoring and analyzing network traffic continuously, you can discover each 

protocol that is in use on the network at any given moment. This addresses two of the 

primary challenges:

1. Manual audits only give you a point-in-time snapshot. There are many well-docu-

mented ways for insecure protocols to be reintroduced to your environment between 

audits, which are usually conducted quarterly at best.

2. Manual audits are extremely time- and energy-consuming, taking away time from 

other more critical security functions like responding to actual threats.

With the increase in remote and distributed workforces and hybrid environments with both 

on-premises and cloud components, the number of ways that insecure protocols may be 

introduced into your environment have multiplied at the same time that maintaining an 

accurate inventory has grown massively more difficult. Continuous monitoring of network 

traffic for protocol identification and threat detection and response has gone from a 

nice-to-have to a must-have.

Maintaining an 
inventory of 
software and 
hardware in your 
environment is a 
fundamental 
necessity for 
security hygiene.



What’s in a Protocol?
Protocols are the lingua franca of the network, allowing connected devices to communicate 

with each other regardless of differences in operating systems, hardware, and processes. 

Protocols work by establishing a set of rules for how data is transmitted between different

network devices, and include everything from how that data is protected (encryption) to how

domains are resolved. While protocols for network communication can be updated and 

refined, and new ones can be created, many protocols in common use today have been 

around for decades.

Different protocols are used in different ways, both by IT teams and malicious actors. For

example, the Domain Name System (DNS) protocol makes navigating the internet easier for

users by mapping IP addresses to human readable domain names, but is frequently misused 

by attackers for malicious purposes such as command and control (C2) and data exfiltration.

You can learn more about protocols and threat activities associated with them by visiting the 

ExtraHop Network Protocol Library.

This report focuses specifically on four of those protocols: SMBv1, LLMNR, NTLM, and HTTP, 

the prevalence of these protocols within enterprise IT environments, and the risks associated 

with each.

Server Message Block (SMB) v1
Server Message Block (SMB) is a protocol that was developed in the 1980s and is used 

primarily for sharing things like files, printer services, and communication between networked 

devices. During the 1980s and 1990s, Microsoft attempted to rebrand SMBv1 under the 

name Common Internet File System (CIFS) and expanded its capabilities to include the 

transmission of large files and the establishment of direct connections over port 445.

As it turned out, SMBv1 (CIFS) was notoriously buggy, chatty, and difficult to use, and had 

major security deficiencies. When Microsoft introduced SMBv2 in 2006 they abandoned the 

CIFS nomenclature altogether. Six years later, in 2012, Microsoft introduced SMBv3, and in 

2013 the company officially deprecated SMBv1.

Despite the deprecation, Microsoft continued to install SMBv1 on its Windows Servers until 

2016. By that time, Microsoft was actively urging the Microsoft user community to stop using 

SMBv1, but with millions of machines using the protocol, many of the warnings, including 

those from within the Windows Server engineering group, went unheeded. This is why, when 

EternalBlue and related exploits—known collectively as Eternal(x)—came to light in 2017, 

SMBv1 was still pervasive in IT environments around the world. The Eternal(x) vulnerabilities 

exploit a buffer overflow vulnerability in SMBv1.

How Common is SMBv1?
Based on research conducted by ExtraHop in the first three months of 2021, 88% of

environments have at least one device running SMBv1. While that might seem like a staggering 

number, the good news is that in the cases where it’s just one device, this is probably

intentional. Red teams still use SMBv1 as a tool in penetration testing exercises, which 

probably accounts for those environments with just one instance.

The problem is that 67% of environments have at least 10 devices running SMBv1 and that’s 

likely not intentional. While 10 devices might seem like a relatively small number, the remote 

code execution enabled by Eternal(x) exploits makes any device running SMBv1 an easy pivot 

point from which to launch a large-scale attack. These 10 devices might be a tiny fraction of

the assets in an environment, but defense is a zero-fail mission. SMBv1 doesn’t need to be 

installed on every device in the environment to be used to launch a catastrophic attack. It only

needs to be on one.

The numbers only get scarier from there. According to ExtraHop data, 37% of environments 

have at least 50 devices running SMBv1, and 31% of environments have 100 or more 

devices still using the protocol four years after WannaCry and NotPetya rocked the world.

In the Wild: SMBv1
A High Stakes Gamble

In early 2019, almost two years after the EternalBlue vulnerability came to light, ExtraHop 

was working with a branch of a US Federal Agency. The agency was aware that it still had 

machines running SMBv1. What they didn’t know was which machines, or how many.

Their challenge was two-fold. First, the reason they were still running SMBv1 is because so 

many of their legacy systems used the protocol. Getting rid of it was a massive logistical 

undertaking, as many of their systems still ran on Windows XP, which couldn’t use later

versions of the protocol. However, they’d recently been advised by their NAS vendor that 

the vendor was going to stop supporting the SMBv1 protocol.

Second, while they had continued using SMBv1 long after its vulnerabilities (and the damage 

that could be wrought through their exploitation) had come to light, they were well aware of

the risks associated with the protocol. 

The security team at the agency used their SMB/CIFS Dashboard in Reveal(x) to pull up all 

devices running SMBv1. They quickly found that they still had a large number of devices 

using the protocol, including their entire VDI deployment. This protocol exposed the branch 

of the agency to huge risk of a fast-moving ransomware attack, among other things.

While the transition away from SMBv1 took effort, the move ultimately meant a more secure 

environment for the agency. Unfortunately, the ongoing use of legacy systems that don’t 

support later versions of the SMB protocol are a major reason that many organizations 

remain exposed to Eternal(x) exploitation.

A Brush with Ransomware Four Years After WannaCry

In March 2021, news broke that Taiwanese computing giant Acer had been severely

compromised by ransomware. The $50 million ransom demand was the largest in history, 

and REvil, the cybercriminals responsible for the attack, had architected a trump card. Not

only had their attack encrypted a large percentage of the company’s files, they had also 

exfiltrated huge quantities of data. In the event Acer had a back-up, they could still extract 

the ransom by threatening to leak the stolen data.

The exfiltrate-then-encrypt play is becoming increasingly common in ransomware attacks as 

cybercriminals try to maximize their leverage. Just a few months before the disclosure of the 

Acer attack, an ExtraHop customer experienced a very similar attack.

In late 2020, a large ExtraHop customer based in North America was alerted to a 

Ransomware Activity detection in Reveal(x) 360. The same devices were also seeing alerts 

for detections on SMB data staging and suspicious file reads. By looking at Related 

Detections, the customer’s security team determined that the attackers were also in the 

process of exfiltrating data before they encrypted it in an effort to inflict maximum damage.

The team was able to quickly identify and quarantine affected assets and accounts, and as a 

result, the attackers were only able to encrypt a small percentage of targeted files.

While the customer averted disaster in this case, it serves as a cautionary tale, not only

about the new ransomware playbook, but about the ongoing risks associated with SMBv1. 

Devices running this protocol remain an easy target for attackers, especially ransomware 

gangs more interested in money than in information.

You can read more about this ransomware trend here. 

The Risks of SMBv1

The reason that SMBv1 has been so successfully exploited for attacks like WannaCry and 

NotPetya is that, if an attacker can successfully access a server with SMBv1 enabled, they

can quickly spread malware to other unpatched servers across a network. In an 

SMBv1-based attack, the attacker sends multiple requests, or messages, to a file server over

SMBv1. Each SMBv1 message is specially designed to manipulate the file server memory in a 

way that eventually causes a buffer overflow, which enables the attacker to deliver a 

malicious payload, such as ransomware, to the kernel of the server.

Buffer Overflow attacks of system level services are particularly dangerous because they

provide attackers with a wide latitude for follow-on activities such as injecting malicious 

payloads, scraping user credentials from memory, and setting up hidden persistence 

mechanisms that reside only in memory.

Link-Local Multicast Name Resolution (LLMNR)
Link-Local Multicast Name Resolution (LLMNR) is a protocol that allows name resolution 

without a DNS server. Essentially, LLMNR is a layer 2 protocol that provides a hostname-to-IP

resolution on the basis of a network packet that’s transmitted via Port UDP 5355 to the 

multicast network address (224.0.0.0 through 239.255.255.255). The multicast packet queries 

all network interfaces looking for any that can self-identify authoritatively as the hostname in 

the query.

LLMNR is distinct from other protocols described in this report, in that it was never adopted as 

an IETF standard protocol (although it was defined in RFC 4795).

LLMNR was originally created as a workaround to enable name resolution in environments in 

which DNS servers would be impractical, such as small private networks. LLMNR was created 

as a way to achieve name resolution without the onerous requirements of DNS. The protocol 

has been (and still is) used by operating systems, including Microsoft Windows, to identify

networked devices like file servers.

How Common is LLMNR?
For a protocol that’s not quite a protocol—and a very risky one at that—it’s usage is still 

surprisingly common. De-identified network telemetry from ExtraHop Reveal(x) shows that 

70% of enterprise environments have at least 10 clients still running LLMNR. Unfortunately, as 

the device counts go up, the number of environments with vulnerable clients doesn’t decline 

by much. Fifty-five percent of environments have fifty or more LLMNR clients, while 46% have 

more than 100 such clients.

The Risks of LLMNR
While LLMNR provides a DNS-free mechanism for host-name resolution within a local 

environment, it also provides an avenue of attack for malicious actors. An attacker can use the 

protocol to trick a victim into revealing user credentials. This is done by leveraging LLMNR to 

gain access to the user credential hashes, which can then be cracked to reveal actual 

credentials, especially if older MS password techniques like LANMAN are not disabled.

How does this work if you’re the attacker? The first step is to configure a node on the network 

to answer that it is the hostname associated with any query. For the requesting client, this 

creates a race condition in which the client will not only accept, but trust whichever device 

answers first. This is because the protocol specifications of LLMNR state that all client

responses are trustworthy.

This is when credential hashes come into play. When the client receives a definitive “It’s me!”

from a compromised device, it automatically sends a hashed copy of the current user's 

credentials as part of the response. This provides the attacker with a hashed copy of the 

credentials which can be decrypted, or leveraged via pass-the-hash attacks to begin 

escalating privileges within the broader network.

While DNS is not without its challenges, it’s a far more secure way to accurately identify host

names. With that said, DNS should be carefully monitored to ensure that it is not itself being

utilized for nefarious purposes. 

Fig. 4 When a DNS request for a hostname cannot be resolved or a DNS server is unavailable (1), clients with LLMNR enabled 

will broadcast a query to all local devices over UDP 5355 (2). If an attacker is listening, they can respond and impersonate the 

requested host (3). If the host is an authenticated resource, the client response will contain user credentials. 

New Technology LAN Manager (NTLM) v1
New Technology LAN Manager (NTLM) is a proprietary Microsoft protocol introduced in 

1993 to replace Microsoft LAN Manager (LANMAN). NTLM is part of a cohort of Microsoft 

security protocols designed to collectively provide authentication, integrity, and 

confidentiality to users.

NTLM is what is known as a challenge-response protocol used by servers to authenticate 

clients using password hashes. In its original incarnation NTLMv1, used a fairly simple (and 

easily compromised) authentication method. The process by which NTLM authenticates 

users is described by Microsoft below:

NTLM credentials are based on data obtained during the interactive logon process and 
consist of a domain name, a user name, and a one-way hash of the user's password. 
NTLM uses an encrypted challenge/response protocol to authenticate a user without 
sending the user's password over the wire. Instead, the system requesting 
authentication must perform a calculation that proves it has access to the secured 
NTLM credentials.

While NTLMv1 was eventually replaced by NTLMv2, the next generation of the protocol 

didn’t fare much better when it came to actually protecting passwords from being 

intercepted by malicious actors. NTLMv2 added a few features, including a time stamp and a 

usernames appended to the hash. While this helps mitigate offline relay attacks, it introduced 

other vulnerabilities and did little to improve the overall security of the protocol.

The problem with this cryptography scheme is that it’s incredibly easy to crack. In 2012, it 

was demonstrated that every possible permutation of NTLM’s eight-byte hash could be 

cracked in under six hours. In 2019, an open-source password recovery tool known as 

HashCat demonstrated that it could crack any eight-byte hash in under two and a half hours, 

a fact the The Register noted—with its trademark snark—was less time than it took to watch 

Avengers: Endgame.

How Common is NTLMv1?

Despite the recommendation from Microsoft that organizations cease use of NTLM in favor

of the much more secure Kerberos authentication protocol, NTLM is still quite common in 

enterprise environments. While ExtraHop did not look at the ubiquity of NTLMv2, the less 

secure of the two versions, NTLMv1 is still in broad use.

According to network telemetry from Reveal(x), 34% of environments have at least 10 clients 

running NTLMv1, less than the number of organizations with the same number of devices 

running SMBv1 and LLMNR, but still a significant number for a protocol that has been 

deprecated for over a decade, with 23% of organizations having fifty or more clients using 

NTLMv1, while 19% have one hundred or more clients using the protocol for authentication.

The Risks of NTLM

Using NTLM for authentication exposes organizations to a number of risks. A skilled attacker

can easily intercept NTLM hashes that are equivalent to passwords or crack NTLMv1 

passwords offline. A successful exploit against NTLMv1 authentication can enable an 

attacker to launch machine-in-the-middle (MITM) attacks or take complete control of a 

domain.

Fig. 6 During an NTLM relay attack, the attacker acts as a machine-in-the-middle (MITM), receiving and then forwarding the 

NTLM messages [1]. The attacker then creates an authenticated session with the server [2]. With this technique, the attacker

only needs the NTLM hash to move laterally across the network or access sensitive information stored on servers.

In an MITM attack, malicious actors insert themselves between the client and the server, 

allowing them to intercept all data transmitted between those devices. If the 

communications are not encrypted, or the ciphers are weak, as in the case of NTLM, MITM 

attacks can result in compromised credentials, scrapped PII, stolen trade secrets, the 

injection of fake or manipulated data, and much more. In fact, recently patched flaws in 

current NTLM versions allow attackers to force a downgrade of the security features within 

the NTLM protocol. Attackers can then leverage stolen credentials to pivot between 

machines until they identify domain admin accounts that can be used for direct AD Server

access and a full domain takeover.

Plaintext Credentials over Hypertext 
Transfer Protocol (HTTP)
The Hypertext Transfer Protocol (HTTP) is almost certainly the most commonly known 

application protocol. Whether you know anything about networking or not, chances are 

you’ve seen it at the beginning of every web address you’ve ever visited. A distributed, 

collaborative, hypermedia information system, it allows users to communicate data on the 

World Wide Web. Alongside its sister protocol, HTML, it’s the foundation of the internet we 

know today.

In 1995, four years after the introduction of HTTP, it’s more secure version, HTTPS, arrived 

on the scene. This was in response to demand for companies to be able to process payment 

information over the internet—something that couldn’t be done over HTTP without blatantly

exposing payment card information. Unlike HTTP, HTTPS uses TLS to encrypt the 

communications between clients and servers, preventing people from intercepting and 

reading your data in flight. It also preserves the integrity of data, helping to prevent it from 

being broken or corrupted.

While HTTP has never been officially deprecated, in 2017, Google took a major step toward 

phasing out the use of insecure HTTP. In January of 2017, Google Chrome started marking all 

non-HTTPS websites as “insecure.” Since that time, any website that stores information such 

as login credentials, credit card information, or PII must use HTTPS in order to function 

effectively in Chrome. Google also gives search priority to HTTPS sites.

While HTTP is not inherently problematic, its use for transmission of sensitive data is 

definitely a major risk. When plaintext credentials are transmitted over HTTP, those 

credentials are left exposed, the internet equivalent of shouting passwords across a crowded 

room, making it trivial for anyone to intercept and steal those credentials.  

How Common is Plaintext over HTTP?

Detections data from ExtraHop Reveal(x) 360 shows that 81 of 100 enterprise environments 

still use insecure HTTP credentials:

In the Wild: Plaintext Credentials over HTTP

In March 2021, ExtraHop experts were working with a major metropolitan law enforcement 

agency when Reveal(x) encountered a “Credentials Sent over HTTP” detection. The detection 

showed that the device sending credentials was a law enforcement agency laptop. The 

hostname matched the naming scheme for agency laptops, the IP address was within agency

domain space, and the user associated with the laptop was a law enforcement officer with 

the agency.

The security team then pivoted to look at the target of the HTTP credentials, which 

happened to be an internet address. Looking at related records, the team identified the 

address as the domain for a common law enforcement research forum that’s also available to 

the general public. The domain was HTTP, not HTTPS.

Even more concerning was the fact that the officer was accessing a portion of the site for

verified members (typically law enforcement agents and other investigators) that requires a 

login. Because the domain was HTTP and not HTTPS, usernames and passwords were both 

sent in the clear, making it easy for malicious actors to find and steal those credentials 

directly from the web.

Further investigation found that the site in question had a proper SSL certificate and had SSL

enabled. The site was just not configured to make encryption mandatory, potentially

exposing the login credentials of thousands of law enforcement officers and other

investigators who are verified site users.

The Risks of Plaintext Credentials over HTTP

As illustrated in the example above, sending plaintext credentials over HTTP exposes users 

and the organizations for which they work to a number of risks. In addition to credentials, 

HTTP websites can easily expose sensitive customer data such as credit card information 

and PII. 

Of course, even HTTPS isn’t foolproof. Heartbleed, a serious vulnerability in OpenSSL that

first came to light in 2014, is a classic example of how HTTPS can be exploited. Under

normal conditions, SSL/TLS encryption protects information—such as logins and credit card 

numbers—being transmitted over the internet. The Heartbleed vulnerability inadvertently

exposed the memory of systems protected by OpenSSL, compromising the secret keys used 

to encrypt the traffic and giving attackers access to users names, passwords, and other

sensitive information.

Because HTTP or HTTPS are often used to transmit user input from websites and web 

applications, the protocols are sometimes abused to transmit malicious content from the 

public internet into a private environment. For example, an attacker using the SQL injection 

tactic sends SQL statements hidden in HTTP headers or other user-manipulatable fields in 

the HTTP protocol. The encryption used by HTTPS can actually make it more challenging to 

detect SQL injection attacks.

Even with vulnerabilities like Heartbleed, HTTPS is still far more secure than HTTP for

transmission of sensitive information.

A Note on TLS 1.0/1.1
Recently IETF announced the formal deprecation of the TLS protocol version 1.0 and 1.1. In 

the coming months, ExtraHop will carefully monitor the ongoing use of these protocol 

versions across enterprise environments to understand how and if it is being phased out.

How to Determine Whether You’re 
Running Insecure Protocols
There are many ways you can end up running insecure or deprecated protocols or protocol 

versions in your environment, but only a few ways to find them and get them out.

When it comes to the introduction of insecure protocols, the "tyranny of default" is often to 

blame. Devices and software that communicate across the network are configured with 

default settings that may go out of date over time. If a new device or solution is introduced 

into the environment, but left to its default configuration, it may run protocols that are no 

longer considered secure.

Similarly, cloud systems and workloads use configuration templates to determine their

protocol usage, and over time, as new protocols are developed and old versions deprecated, 

these configuration templates may go out of date and need to be updated. Any new

workloads created with an older template may introduce insecure protocols into the environ-

ment. Because of the often short-lived and ephemeral nature of cloud workloads, it can be 

very challenging to catch these instances of insecure protocol usage and know how to get

them out of your system. 

So, how do you do it?

Manual, Point-in-Time Audit

Maintaining an inventory of software and hardware in your environment is a fundamental 

necessity for security hygiene, and is recommended in the first and second security controls 

in the CIS Top 20. Despite being a vital security practice, maintaining this inventory is a 

challenge for many organizations. One way to gather such an inventory is through a manual 

audit using a combination of scanning tools, ranging from the free, open source tool Nmap to 

costlier commercial products.

While scanning the network for devices and protocols in use can provide a valuable snapshot 

of a point in time, it doesn't protect you against new occurrences of insecure protocols. 

Neither does a point-in-time scan offer any guarantee that you've discovered every instance 

of an insecure protocol actively in use. Particularly in a large and heavily segmented network, 

scanning tools may simply not uncover what you're looking for. As one security analyst once 

remarked, “The network is dark and full of terrors.”

So how do you find insecure protocols in an enterprise-scale network?

Continuous Network Monitoring

By passively monitoring and analyzing network traffic continuously, you can discover each 

protocol that is in use on the network at any given moment. This addresses two of the 

primary challenges:

1. Manual audits only give you a point-in-time snapshot. There are many well-docu-

mented ways for insecure protocols to be reintroduced to your environment between

audits, which are usually conducted quarterly at best.

2. Manual audits are extremely time- and energy-consuming, taking away time from

other more critical security functions like responding to actual threats.

With the increase in remote and distributed workforces and hybrid environments with both 

on-premises and cloud components, the number of ways that insecure protocols may be 

introduced into your environment have multiplied at the same time that maintaining an 

accurate inventory has grown massively more difficult. Continuous monitoring of network 

traffic for protocol identification and threat detection and response has gone from a 

nice-to-have to a must-have.

INSECURE PROTOCOL USAGE EXPOSES ORGANIZATIONS TO CYBERSECURITY RISK  |   SECURITY ADVISORY     15



ExtraHop is on a mission to arm security teams to confront active threats and stop breaches. 
Our Reveal(x) 360 platform, powered by cloud-scale AI, covertly decrypts and analyzes all cloud 
and network traffic in real time to eliminate blind spots and detect threats that other tools miss. 
Sophisticated machine learning models are applied to petabytes of telemetry collected continuously, 
helping ExtraHop customers to identify suspicious behavior and secure over 15 million IT assets, 
2 million POS systems, and 50 million patient records. ExtraHop is a market share leader in network 
detection and response with 30 recent industry awards including Forbes AI 50, Cybercrime 
Ransomware 25, and SC Media Security Innovator.

Stop Breaches 84% Faster. Get Started at www.extrahop.com/freetrial

ABOUT EXTRAHOP

info@extrahop.com 
www.extrahop.com

© 2021 ExtraHop Networks, Inc., Reveal(x), Reveal(x) 360, Reveal(x) Enterprise and ExtraHop are registered trademarks or marks of ExtraHop Networks, Inc.

A Note on Data Sourcing
The ExtraHop platform was engineered from the beginning for privacy and security. Our 

products passively monitor and analyze over four petabytes of network traffic per day to 

understand the communications between all devices and applications. We then extract 

de-identified metadata and send it to the cloud where we can leverage the scale and 

compute resources to apply advanced machine learning to more than 75 protocols for 

high-fidelity threat detection.

But while ExtraHop Reveal(x) can see every communication, device, and workload within a 

customer environment—from the cloud, to the data center, to the IoT device—that doesn’t 

mean ExtraHop security researchers can. Our platform contains layers of security and privacy 

controls designed to protect customers. If you’ve ever wondered why ExtraHop issues 

relatively few reports that mention our own customers’ data, it’s because we made it very 

hard for anyone but the customer to whom it belongs to access it. We firmly believe that’s 

how it should be.

Please note that statistics in this report were gathered from large samples, and may have 

small error margins.

What we can extract from our platform is information aimed at making sure that our custom-

ers have the very best visibility and insight. Take the device data, for example. ExtraHop uses 

de-identified (anonymized) aggregate data to catalog device models, ensuring that all 

customer systems get smarter whenever a new model is seen by a Reveal(x) sensor. It puts 

data to work for everyone without compromising privacy or security—and that’s a win-win.




