Abstract

Multiple branches of the United States military, spearheaded by United States Cyber Command, have embraced threat hunting as a way to defend against more sophisticated adversaries. This white paper explains how Cyber Protection Teams (CPTs) can use wire data to automate detection, speed investigations, and improve the granularity and collection of information. The paper includes examples of threat hunting workflows for rapidly investigating file access by user, ransomware infections, Russian DNS queries, and DNS tunneling.
Introduction

The challenge of hunting bad actors, insider threats, and advanced persistent threats within an enterprise has increased exponentially as the IT landscape moves away from traditional datacenters and application architectures and towards hybrid and distributed environments comprised of highly virtualized and containerized assets. The sophistication of bad actors has also increased, reducing the value and timeliness of what self-reported data such as logs, SNMP, and NetFlow metrics can reveal about enterprise security.

The most effective method of detecting these sophisticated bad actors is a combination of automated threat detection and active hunting by Cyber Protection Teams (CPTs). Multiple branches of the United States military, spearheaded by United States Cyber Command, have embraced this strategy. Private industry has taken notice, and has dramatically increased investments in “hunt teams” in recent years. CPT operators are tasked with finding the proverbial needle in a haystack of petabytes of data generated by a multitude of heterogeneous endpoint devices communicating via numerous protocols.

What Is Threat Hunting?

Threat hunting starts with the assumption that bad actors have already breached perimeter defenses and are operating inside the environment. The goal is to proactively detect malicious activity by forming hypotheses about how attackers may have penetrated defenses, which systems are compromised, and what data they may have accessed.

Threat hunting efforts require familiarity with the environment, knowledge of potential weaknesses, and continuous collection of data. Therefore, only organizations with fairly mature security operations should formalize their threat hunting efforts. Organizations should prioritize securing their infrastructure and building out monitoring capabilities.

Security practitioners appreciate the idea of seeking out active threats instead of waiting until notified. In a 2017 survey of 330 cybersecurity professionals, Crowd Research Partners found that respondents spent much more time (43 percent of time) reactively investigating security incidents through activities such as alert triage than they spent proactively seeking out threats (only 22 percent of time). The same survey also found that 93 percent of respondents would rather work in a security operations center that focused on “lean-forward, proactive security capabilities.”

Early threat hunting efforts are paying off. In a separate 2017 survey of 306 respondents, the SANS Institute found that 91 percent of respondents improved the speed and accuracy of their response due to threat hunting, while 88 percent of respondents were able to reduce dwell time (the period from initial infection to detection).¹

Using Wire Data to Hunt Threats

The industry is coming to the realization that network traffic is like the bloodstream of an organism: just as with biological systems, symptoms of resident malware can be detected during the early stages of an infection. Real-time network traffic analytics is key to taking advantage of these early indicators of infection, since by the time vast quantities of stored network traffic are mined, these incipient infections may have already developed into a systemic and catastrophic disease.

Wire data serves as a trusted source of information because it is an observed record of activity rather than self-reported information such as log, SNMP, and agent data. As such, wire data is highly resistant to compromise and can be used to validate security incidents or perform root cause analysis. In order to provide timely and actionable intelligence, however, this ocean of data must be mined in-flight and in real time. The traditional approach of writing petabytes of network traffic captures to disk and mining it after the fact is prohibitive in both time and cost. This approach simply does not scale in the modern reality of 40 Gbps and soon-to-be 100 Gbps networks.

ExtraHop takes the opposite approach, collecting raw network traffic and mining it in real time at 40 Gbps, automatically discovering client and server assets, and distilling terabytes of traffic per day into manageable and meaningful wire data. This is performed without the use of agents in a passive, out-of-band manner. Wire data is created by ExtraHop’s real-time stream processor, which uses its native fluency in over 45 industry standard L2-L7 protocols to extract transactions and thousands of metrics from all these protocols simultaneously.

This real time approach allows CPTs to find anomalous activity in an efficient and timely manner, improving accuracy and response times between all teams involved in detecting and mitigating an attack. Real-time anomaly detection by the ExtraHop platform allows CPT operators to immediately shift focus to the methods and assets involved in an active attack without being overwhelmed by a huge backlog of data.

The comprehensive dataset created by the ExtraHop platform is available to CPT operators in an intuitive, visual user interface with a flexible workflow, allowing different teams or individuals to optimize the platform according to their needs. This intuitive user interface also has a low learning curve, allowing new operators to be effective in a short period of time with minimal training, especially valuable to CPTs with high turnover rates.

This paper will discuss how the ExtraHop platform fulfills two critical roles in threat hunting: automated threat detection, and active hunting by CPT operators.

Automated Threat Detection

While threat hunting is focused on human-driven activities, machine-driven analysis and data visualization can help to identify anomalous behavior that deserves special attention. With ExtraHop automatically discovering and monitoring network assets, the resulting real-time analysis of all transactions on the network (data-in-motion) allows CPTs to perform trending and alerting to detect, observe, and measure anomalous behavior seen on the network from any device or user across all hosts, services, and transactions.

- Automatically discover, classify, and baseline all devices communicating on the network and discover their dependencies
- Identify and investigate anomalies by endpoint, protocol, or user
- Monitor use of banned ports, protocols, and services
- Detect tunneled command and control traffic and data exfiltration
- Detect beacons
- Geolocate traffic sources/destinations

ExtraHop utilizes machine learning to continuously build baselines for all clients, systems, applications, and infrastructure and then detect anomalies. These behavior-based alerts do not require any configuration by your teams. The ExtraHop platform builds baselines for new devices as soon as they are discovered by the system, providing continuous and complete coverage for dynamic environments.

Automatic anomaly detection provides your CPTs with a better understanding of what is abnormal in an environment, even if they may not have deep familiarity with specific applications. The alerts serve as starting-off points for investigation and include context to help staff determine the level of severity of the event, along with direct links into the device detail page with the appropriate timeframe selected.
Figure 2: Anomaly detection detects abnormal behavior, such as a spike in authentication errors.

Additionally, pre-built custom triggers written in JavaScript can immediately detect and take action on anomalous activity via alerts or REST calls to enforcement/mitigation devices. These triggers can analyze any aspect of ExtraHop’s supported network protocols, such as checking HTTP payloads for known malware packages, detecting indicators of Tor activity, and much more. As another example, the Scan Detection Bundle continuously analyzes network traffic for indicators of multiple reconnaissance methods and reveals them in real time, as shown below in Figure 3.
Active Hunting

ExtraHop is also used as an interactive detection platform by CPTs within networks that are suspected of being actively compromised or containing payloads associated with advanced persistent threats. ExtraHop may be installed as a permanent, resident tool within a network or can be included as small-form-factor or virtual devices in the standard loadout for CPTs deployed to remote locations. ExtraHop’s rapid, agentless deployment model makes it an ideal drop-in investigative platform.

The key characteristics of the ExtraHop platform which enable active hunting are described below, followed by three examples of active interrogation of the wire data that ExtraHop makes possible.

Unified Traffic Visibility

ExtraHop provides real-time visibility and analysis of wire data via its single platform workflow, from low-level packet captures all the way up to protocol transaction analysis and dashboard visualizations. Operators are able to easily pivot between PCAPs, metrics, and transactions within the same intuitive visual user interface, allowing them to achieve a complete incident timeline without the need to consolidate data from disparate tools.

Zero Knowledge / Zero Trust Discovery of Endpoints and Traffic

Since ExtraHop does not require agents or foreknowledge of a network’s architecture or activity, all devices transacting on the network, both known and unknown, are discovered. This posture readily reveals malicious/anomalous behavior without any modification to the environment under investigation other than providing access to a copy of the network traffic (SPAN, tap, or SPAN/tap aggregation solution).

Cross-Tier Protocol Visibility Using a Visual User Interface

CPT operators are able to easily pivot through all aspects of network traffic, moving from clients to servers, from one protocol to another, in order to follow the trail of an attack in an intuitive, visual workflow. Not having to learn a text-based query language has proven to be of great value, allowing even inexperienced analysts to quickly derive insight from the platform when on missions, as compared to other tools. Teams with high turnover also benefit from ExtraHop’s low learning curve.

Flexibility and Customization

Easily created dashboards target specific protocols for monitoring, such as DNS, storage, SSL/TLS, HTTP, and more. Operators with varying experience levels can readily create dashboards on demand within the visual user interface, as well as make adjustments to existing dashboards with minimal effort and training. This flexibility, combined with separate accounts for each user, allows teams to operate effectively even without the assistance of senior operators, thus allowing more teams to be deployed concurrently and with a high degree of autonomy.

- ExtraHop’s JavaScript-based trigger engine allows for a high level of custom detection as described earlier, such as identification of beaconing behavior, DNS tunneling indicators, anomalous user behavior, and more.

- All collected wire data may be extracted from the ExtraHop platform via its REST API, or streamed in real time via its Open Data Stream to industry standard big data platforms for centralized collection or correlation with other data.
Example 1: File Access by User

A CPT operative is able to investigate a specific user and immediately identify all network files they have accessed in an arbitrary period of time. This query was performed just by typing the user’s ID in the global search field and clicking on SMB_READs. This search field supports both simple and complex/nested queries that run against every field of all parsed protocols simultaneously within the ExtraHop datastore, resulting in rapid cross-tier, cross protocol results.

Figure 4: Filtering SMB READ operations by user name reveals the files accessed

Another click or two searches every CIFS file read operation across the enterprise, revealing that only this one user has accessed a particular file of interest.

Figure 5: Adding a filter for the file name shows when and how often the particular file was accessed

Example 2: Ransomware Attack Investigation

The CIFS protocol-level visibility and cross-tier correlation discussed in the previous example is also foundational to ExtraHop’s ability to detect ransomware attacks in real time, and to determine the source of the malicious payload which initiated the attack. In the following dashboard, clients performing file WRITE/MODIFY operations with suspicious file extensions are revealed.
Three clicks more result in a query of the CIFS transaction records for one of the client IP addresses identified as performing ransomware-like behavior (10.0.0.15) reveals the “HELP_DECRYPTING” files that the ransomware package created, shown in Figure 7 below.

One more search for the client IP address reveals all HTTP URIs accessed by this client in the same timeframe and provides an investigative path to determine how this client became infected with ransomware, as shown in Figure 8 below.
Finally, three more clicks reveal that a particular suspect URI has only been accessed by this one client across the enterprise, ensuring that personnel and resources are not squandered on an isolated threat.

Example 3: Russian DNS Queries and DNS Tunneling Detection

In the figure below, a CPT operative is able to interrogate every DNS request made from all clients enterprise-wide in a selected time period and identify which queries are for Russian FQDNs, along with details about the DNS transaction. This output was generated by merely typing ".ru" in the global search field and clicking on DNS Requests from the results in the drop-down menu. Both isolated and DNS beacon behavior can be easily revealed in this manner.
Figure 10: Filtering on “.ru” quickly narrows down DNS request transaction records from Russian domains.

Just three more clicks reveal every protocol transaction involving the client that performed this DNS query, allowing a CPT operative to identify all network activity this client has performed, to determine if a malicious payload was downloaded, and to track any subsequent actions made by this payload.

Figure 11: Pivoting the query to focus on the client reveals records for all network activity.

Additionally, a glance at a DNS tunneling detection dashboard can reveal whether this activity was part of enterprise-wide anomalous traffic indicative of DNS tunneling. This dashboard tracks multiple characteristics of DNS tunneling behavior, including:

- Unapproved DNS servers
- Large DNS response payloads sizes and high number of DNS responses
- Unexpected use/volume of TXT and NULL records
- Unexpectedly long query/response names
Figure 12: Suspicious DNS activity includes reverse lookup failures, large requests, WPAD activity, and ISATAP tunneling

About the ExtraHop Platform

The ExtraHop platform is a simple turnkey solution that empowers you to make sense of all data passing over the network. Your data in motion is the most valuable source of information that your organization can mine for insights. To access your data in motion, however, you need a platform for transforming large volumes of unstructured network packets into structured wire data. The ExtraHop platform is built to do exactly that at an unprecedented scale.

The ExtraHop platform is a completely passive out-of-band solution, requiring no agents, host configurations, or credentialed access. It will provide maximum visibility into the transactions occurring within your network without degradation or disruption to the environment. It will not actively interrogate any devices, nor will it add any additional traffic to the networks it monitors.

Figure 13: Unstructured data is reassembled into structured wire data that can be mined for insights
Conclusion

Threat hunting is an emerging practice born out of a need to detect more sophisticated threats that evade perimeter defenses and passive monitoring. Early industry feedback is encouraging, with a vast majority (88 percent) of respondents reporting reduced dwell time (the period from initial infection to detection) as a result of their threat hunting efforts.\(^3\)

Wire data is an unbiased, real-time source of intelligence but has not been made available to CPTs. The ExtraHop platform unlocks the value of wire data for threat hunting efforts. By using ExtraHop as a real-time threat-hunting platform, you can dramatically increase the depth and breadth of visibility while decreasing the amount of time and effort needed to derive actionable intelligence. When evaluating platforms for CPTs, it is important to consider the following:

- Does this solution make it easy to collect low-noise, relevant data?
- How easy is it to search through data, derive insight from it, and rapidly act on that insight?
- What impact will this capability have on time-to-detection and time-to-resolution?
- What kind of breadth and depth of information does this solution offer?
- How easy is this platform to deploy and what impact will it have on the environment?
- How susceptible is the monitoring system and data to alteration by malicious actors?

The ExtraHop platform is purpose-built to address all of these considerations, and greatly increases the level of visibility and effectiveness of Cyber Protection Teams.

About ExtraHop
ExtraHop is the leader in real-time IT analytics. Our platform makes data-driven IT a reality, applying advanced analytics and cloud-based machine learning to all digital interactions to deliver timely and accurate insight. IT leaders turn to ExtraHop first to help them make faster, better-informed decisions that improve performance, security, and digital experience. Just ask the hundreds of global ExtraHop customers, including Sony, Lockheed Martin, Microsoft, Adobe, and Google.

ExtraHop Networks, Inc.
520 Pike Street, Suite 1700
Seattle, WA 98101 USA

www.extrahop.com
info@extrahop.com