

Optimizing TCP: Nagle’s Algorithm
and Beyond
Tips for using Nagle’s Algorithm, TCP_QUICKACK,
Delayed ACK, and other TCP optimization settings that
are tough to understand, but crucial to get right

Abstract
The Transmission Control Protocol/Internet Protocol stack (TCP/IP) is foundational to today’s digital enterprises,
and its quality of performance has repercussions that everyone in IT should care about—not just network
engineers. TCP is where the network and application meet, and is often ignored by network engineers and
application teams alike when troubleshooting performance issues.

At ExtraHop, we’ve learned through our work with hundreds of enterprise customers that many network and
application performance problems are the result of a poorly tuned TCP/IP implementation. Understanding how to
diagnose TCP issues, and how to fix them, is a great asset for any IT professional.

Office workers accessing internal applications. Shoppers browsing a website. Doctors logging into a workstation. All
of these people will have a worse experience if network, application and operations teams aren't optimizing TCP
configurations for their particular use case.

After reading this paper, you'll have a better understanding of some oft-misunderstood methods for improving TCP
performance, which will make it easier to troubleshoot network performance problems in the future, and will give
you a leg-up when it comes to fine-tuning your network.

WHITE PAPER

WHITE PAPER
Optimizing TCP: Nagle’s Algorithm and Beyond

2

Table of Contents
A Portrait of TCP as a Young Protocol . 3
Optimizing TCP - Overview . 3
Sett ings and Algorithms . 3

Nagle 's Algor ithm & TCP_NODELAY . 4
What Is Nagle's Algorithm? .. 4
Should You Disable Nagle's Algorithm using TCP_NODELAY? ... 4
What is TCP_NODELAY and Should You Use It? .. 5

TCP_QUICKACK & Delayed ACK . 6

What Is TCP_QUICKACK? .. 6
Should You Disable Delayed ACKs using TCP_QUICKACK? ... 6
What Is Delayed ACK? ... 6
Should You Leave Delayed ACK Enabled? ... 7

See How Deep The TCP Rabbit Hole Goes . 7
More Common TCP Strugg les And How To Combat Them . 7

Retransmission Timeout (RTO) .. 7
Silly Window Syndrome ... 7
Tinygrams .. 7
Karn's Algorithm ... 7
PAWS Dropped SYNs ... 7

Conclusion: Always Be Watching TCP . 8

WHITE PAPER
Optimizing TCP: Nagle’s Algorithm and Beyond

3

A Portrait of TCP as a Young Protocol
TCP was introduced in December, 1974, (RFC 675) with the explicit purpose of providing "a reliable process-to-
process communication service in a multinetwork environment." The protocol was developed by fathers of the
Internet Vint Cerf and Bob Kahn, and introduced in the seminal paper A Protocol for Packet Network

Intercommunication.1 The protocol continued to be refined, but the core principles were laid out in that first paper
and a subsequent RFC published in 1981 (RFC 793).

The networks of 1981 were much smaller, had fewer nodes, fewer processes operating, and far lower-bandwidth
connections for intercommunication than today's networks. A 1981 TV news segment estimated that there were
"two-to-three thousand home computer owners" in the San Francisco Bay area (lol), around 500 of whom had
used the internet to access the brand new electronic editions of the city's local newspapers.2

Even though global interoperability between networks was the explicit goal of TCP, its creators couldn't really
anticipate the eventual enormity of the global multi-network environment that their protocol would come to
enable.

Optimizing TCP
As packet-switched networks became part of the foundational infrastructure of every business, and the public
internet scaled from thousands of users to billions within a few decades, TCP marched on as the core transport
protocol that allowed various systems to talk to each other. TCP was so crucial to networks that it became
impractical to use anything else in its place.

In fact, TCP was partly created to solve reliability and scaling issues with existing protocols. With that in mind, some
of the original core principles of TCP were:

• Accuracy and conf irmat ion of transmiss ion - The packets sent should be identical to the packets

received, and the receiver should let you know the data got there.
• Rel iabi l i ty - The packets sent should all arrive, and should be in the correct order.
• Flow control - Packet flow should adapt to the capacity of the network and endpoints. TCP manages

flow between endpoints, and between the IP layer below TCP and other layers above it.

These principles make TCP a phenomenal transport protocol for many use cases involving networked
communications, but as the complexity and dynamism of network communications have increased, many scenarios
have arisen where TCP must be used, but its core principles are not actually optimized for the situation.

The next section will discuss commonly misunderstood and misused settings and algorithms used for fine tuning
and optimizing TCP, including how to identify situations where the settings are being used incorrectly, or aren't
being used at all when they should be.

1 https://www.cs.princeton.edu/courses/archive/fall06/cos561/papers/cerf74.pdf
2 https://www.youtube.com/watch?v=5WCTn4FljUQ

WHITE PAPER
Optimizing TCP: Nagle’s Algorithm and Beyond

4

The Settings and Algorithms
Nagle's Algorithm & TCP_NODELAY

What is Nagle's Algorithm?
Nagle's Algorithm is a setting that improves the efficiency of network
communications by reducing the total number of TCP packets that need to be
transmitted. Enabling Nagle's algorithm causes TCP implementations to suppress
their normal behavior, that of sending packets immediately when data is received
from an application, in cases where packets might be sent with a very small amount
of payload. For example, if an application emits a single byte of data and tells TCP
to send it, Nagle's Algorithm will force the system to wait until more data arrives to
fill up the packet. Since a TCP packet includes 40 bytes of header information,
sending a packet with a single byte of payload, also called a tinygram, is analogous to
moving your residence by moving each piece of furniture on its own truck rather
than efficiently packing a single truck.

Nagle's Algorithm was introduced to TCP in the mid 1980s by John Nagle (RFC
896) to confront the growing issue of network congestion resulting from excess
tinygrams.

It became necessary to let the owner of a network or application choose how TCP
handled their traffic. They could either:

1. Enable Nagle's Algorithm (the default setting for many TCP implementations), causing some bits to be
delayed in favor of packing them more efficiently into TCP packets and improving the header-to-payload
ratio.

2. Disable Nagle's Algorithm, allowing packets with only a single byte of payload to be transmitted instantly,
to allow tiny bits of info to be transmitted as quickly as possible, even if it results in inefficient network
utilization.

Should You Disable Nagle's Algorithm using TCP_NODELAY?
Maybe. Here's how to find out:

The answer is different for each network, and it largely depends on your traffic mix, whether or not you're already
seeing network congestion or excess tinygrams, and what type of behavior your network needs to exhibit to
deliver the best experience.

Answering this question requires a process of trial and error and fine-tuning for your specific conditions, but the
steps listed below should be a good start in most situations. These require having some kind of monitoring system
that can tell you how many Nagle delays or tinygrams are occurring on your network, or at least give you a general
metric for network congestion in your environment. We'll use ExtraHop in this example, but as long as your
monitoring can report Nagle delays, tinygrams, and other network-congestion metrics, you should be able to use
this process.

1. Set a Basel ine : Look at the TCP stats for whichever server, load balancer, or other endpoint you
suspect may be experiencing or causing latency due to Nagle's algorithm. Check this stat at a few
different times over a period of a few days to get a general idea of what's "normal" for that device. You
don't need to get too scientific at this stage, just get a feel for what's normal.

WHITE PAPER
Optimizing TCP: Nagle’s Algorithm and Beyond

5

2. Change Something : Once you have a baseline, it's time to start tweaking. Toggle Nagle's algorithm on
or off for a few endpoints, depending on what state you started with.

3. Check your status : Check in on your Nagle delays and tinygrams over the next few days. Are you
seeing more or fewer? Are there other performance changes in the part of the network you're looking
at?

4. Soak, Rinse , Repeat : Whether you turned Nagle's algorithm on or off, switch it back to how it was
before, and do the same informal data gathering process. This isn't rocket science, you're just making
tweaks in a somewhat controlled environment, but you can probably get enough insight to figure out
whether Nagle is right for this particular switch or router. Then you can apply the process to other areas
of the network where you suspect it could make a difference.

There are no universal rules around this, but
generally, applications that require immediate
transmission for good user experience will not
benefit from Nagle's algorithm. This is especially
applicable to remote and virtual desktops (Citrix ICA,
particularly) and other applications that require
immediate delivery of data and rapid feedback from
users to function as intended.

Conversely, applications that usually move large files
around, such as storage protocols, don't typically see
much improvement with Nagle's algorithm enabled.
They're already filling packets as full as they can go,
rather than sending packets instantly when any
amount of data arrives.

What Is TCP_NODELAY, and Should You Use It?
TCP_NODELAY is a socket setting that disables Nagle's algorithm and allows tinygrams to be sent across the
network. If you examine the factors listed above and determine that Nagle's algorithm is hurting the performance
of your network, setting TCP_NODELAY is one way to address the problem. This is rarely a good option, since it
allows network-congesting tinygrams to flow freely, but you may encounter circumstances where you're glad this
setting is available.

TCP_QUICKACK and Delayed ACK

What Is TCP_QUICKACK?
TCP_QUICKACK is a setting that allows TCP endpoints to acknowledge the receipt of data instantly in situations
where they would normally wait to see if more data would be arriving.

TCP/IP has a built-in mechanism for endpoints to acknowledge that they have received data, so that the sender
knows the message was received. This acknowledgement is called an ACK segment, and in a typical TCP/IP
implementation with Nagle's algorithm enabled, a sender will await the ACK segment before sending further data.
That effectively means Nagle's algorithm only allows a single TCP packet to pass across any given connection at
once, which can introduce a huge amount of latency.

WHITE PAPER
Optimizing TCP: Nagle’s Algorithm and Beyond

6

Setting TCP_QUICKACK in this scenario allows the receiver to send an ACK immediately in situations where it
would normally wait to see if any further data was going to arrive over the connection first.

Should You Disable Delayed ACKs Using TCP_QUICKACK?
Almost always.

TCP_QUICKACK offers some of the benefits, and none of the downsides, of TCP_NODELAY. John Nagle
himself, the creator of Nagle's algorithm, had this to say on a comment thread comparing TCP_NODELAY to
TCP_QUICKACK:

"Set TCP_QUICKACK. If you find a case where that makes things worse, let me know."

What Is Delayed ACK?
Delayed ACK, or delayed acknowledgement, is a default behavior of TCP that combines several ACK segments into
a single response under some circumstances to reduce network overhead. Instead of sending an ACK immediately
upon receiving data, Delayed ACK allows TCP to combine the ACK with the window adjustment and even the
response data, somewhat reducing network overhead.

Should You Leave Delayed ACK Enabled?
Probably not.

Delayed ACK interacts terribly with Nagle's
algorithm, which is turned on by default for many
systems. This means enabling Delayed ACK might
have unforeseen consequences that would be
difficult to diagnose or pinpoint (especially if you
have a heterogeneous traffic mix across multiple
switches, routers, and VLANs).

Beyond that, Delayed ACK just isn't that efficient. At
best, you're getting a threefold reduction in network
overhead. Using Nagle's algorithm by itself can yield
40x improvement in header to payload ratio, but
turning on delayed ACK and Nagle's algorithm at
the same time negates the value of both.

See How Deep the TCP Rabbit-Hole Goes …
This paper has covered some of the TCP issues that have proven most difficult to detect, and most impactful when
fixed, for actual ExtraHop customers. TCP is integral to every network, and is complex enough that any issues with
it will be tough to diagnose for anyone without direct previous experience with the exact issue at hand. It would be

WHITE PAPER
Optimizing TCP: Nagle’s Algorithm and Beyond

7

hard to outline every possible issue without writing an entire textbook. (In fact, if that's the approach you're looking
for, we'd recommend TCP/IP Illustrated, Volume 1: The Protocols.3)

However, in the interest of helping you prepare as much as possible to recognize issues that may be rooted in TCP,
here's a list of other terms to know, optimization algorithms or concepts you may encounter, and links to resources
to learn more about them if they sound like they might be relevant to the issues you have right now.

• Retransmiss ion Timeout (RTO): This is what happens when a TCP sender doesn't receive
acknowledgement, and stops sending momentarily to give the recipient time to catch up. This can
introduce a lag of over 1 second per transaction. Multiplied across thousands or millions of transactions,
this can create enormous amounts of latency and app slowdowns that are tough to diagnose. Learn more
about RTOs: http://xtra.li/TCPRTOs

• Si l ly Window Syndrome: This is a situation that arises when a TCP sender and receiver have
mismatched expectations of each other. A TCP sender may send data too fast, and the receiver may not
be able to process and acknowledge the data fast enough, causing it to advertise a smaller and smaller
amount of "usable window" for each transmission, until the amount is so small it's silly. Learn more about
silly window syndrome: http://xtra.li/SillyWin

• Tinygrams: A tinygram is a TCP packet with less payload than header. Tinygrams can result from
various timing issues and misconfigurations in a TCP implementation. Learn more about Tinygrams:
http://xtra.li/tnygrm

• Karn's Algor ithm: Karn's algorithm is a setting that makes TCP more effective at estimating the round-
trip time of transmissions. It is almost always turned on by default, and almost always beneficial, but there
are situations where it isn't, and it pays to understand these edge cases. Learn more about Karn's
Algorithm: http://xtra.li/KarnsAlgo

• TCP PAWS Dropped Syns : Protection Against Wrapped Sequence numbers (PAWS) was added to
TCP in the early nineties as internet speeds were rapidly increasing, to protect against older duplicate
messages corrupting still-open connections. PAWS uses timestamps to determine whether packets are
duplicates, so any inconsistency between clocks of senders and receivers (more common in situations
where messages are sent between remote datacenters) can cause confusion and result in dropped SYNs.
At high enough volume this can seriously impact network performance. Learn more about PAWS
dropped SYNs: http://xtra.li/PAWS-SYN

3 http://www.kohala.com/start/tcpipiv1.html

WHITE PAPER
Optimizing TCP: Nagle’s Algorithm and Beyond

8

Conclusion: Always Be Checking TCP
The ultimate lesson here is that a TCP implementation that's misaligned with the needs of the apps or networks it
supports can be the source of a lot of strife. Problems arising with TCP can be tough to diagnose, and are often
blamed on other causes, or even used as justification to buy more networking hardware and bandwidth. By keeping
an eye on your TCP situation, you stand to save yourself and your company time and money, and likely help your
peers on the network or application team get more sleep when an issue arises.

In addition to its industry-leading application protocol analysis, the ExtraHop platform also provides incredible
insight into TCP by reporting on Nagle delays, tinygrams, retransmission timeouts, and other metrics that can be
strong indicators of network latency being introduced by TCP misconfiguration.

Try the ExtraHop interactive online demo to see exactly how easy it can be to diagnose TCP issues and discover
tons of other optimization opportunities in your IT environment: www.extrahop.com/demo

Read how Axstores, a leading retailer in the Nordic region, solved TCP misconfigurations in their new warehouse management
system before rolling it out into production: https://www.extrahop.com/platform/stories/axstores/

“ExtraHop does more than just application monitoring—it gives us visibility into core network
services that are crucial when optimizing performance.”

Stefan Pörn, IT Operations Manager, Axstores

About ExtraHop
ExtraHop makes real-time data-driven IT operations possible. By
harnessing the power of wire data in real time, network,
application, security, and business teams make faster, more
accurate decisions that optimize performance and minimize risk.
Hundreds of organizations, including Fortune 500 companies such
as Sony, Lockheed Martin, Microsoft, Adobe, and Google, start
with ExtraHop to discover, observe, analyze, and intelligently act
on all data in flight on-premises and in the cloud.

ExtraHop Networks, Inc.
520 Pike Street, Suite 1700
Seattle, WA 98101 USA

www.extrahop.com
info@extrahop.com
T 877-333-9872
F 206-274-6393

Customer Support support@extrahop.com
877-333-9872 (US)
+44 (0)845 5199150 (EMEA)

